Update analysis of TPC detector prototype using UV laser tracks

Huirong Qi ZhiYang Yuan, Yue Chang, Liwen Yu, Wei Liu, Jian Zhang, Hongliang Dai, Zhi Deng, Yulan Li, Hui Gong

Nov. 24, 2021

TPC detector with UV laser

2 dE/dx resolution

3 New electronic testing

ロト・西ト・西ト・ 西ト・ 日・ ろんの

Motivation-spatial resolution

$$\sigma_{dE/dx} = \sigma_0 N_{hits}^{-k}$$

Experiment	Readout	Points	Sample	p(GeV/c)	$(\sigma_l/I)_{MC}$	$(\sigma_l/I)_{exp}$
	Pad (<i>mm</i>)					
PEP-4 TPC	4	183	е	14.5	2.6%	3.5%
TOPAZ TPC	4	175	π	0.4-0.6	3.8%	4.5%
DELPHI TPC	4	192	π	0.4-0.6	5.4%	6.2%
ALEPH TPC	4	344	е	45.6	3.0%	4.4%
STAR TPC	12, 20	13,32	π	0.4-0.6	5.3%	6.8%
ALICE TPC	7.5, 10, 15	63,64,32	π	6.0	3.3%	5.0%
TPC for CEPC	1mm×6mm	220	K	5.0	3.1%	
	Pixel(µm)					
<u>GridPix</u> TPC for ILD	55×55	9500	е	2.5	/	4.1%

NO magnetic field NO high energy particle testing beam

3

TPC detector with UV laser

Detector and PCB readout board

TPC detector with UV laser

Diagram of TPC detector study

イロト イポト イヨト イヨト

⁵⁵Fe study

Energy spectrum and gain at T2K/P10/Ar:CO2

æ

< ロト < 四ト < 巨ト < 巨ト

UV laser spectrum - Truncated method

Energy cutting and correction by the events

Energy spectrum of UV

6

dE/dx resolution – 38 hit points

$$\sigma_{dE/dx} = (8.9 \pm 0.4) \,\%$$
(38hits)

9

ъ

프 () () () ()

dE/dx resolution – along drift length

dE/dx resolution - pseudo-tracks using full size

dE/dx resolution - pseudo-tracks of the different hit points

dE/dx resolution – comparison of the existing prototypes

Low power ASIC chip

Layout of ASIC chip

puna habc, porate ared

Test of the signals

ASIC chip for TPC readout have been developed

- The power consumption is 2.33 <u>mW/channel</u>
 - \square P_{AFE} = 1.43 mW/channel
 - \square P_{ADC} = 0.9 mW/channel @ 40M/s
- ENC =852e @Cm = 2pF, gain =10 mV/fC and can be reduced to 474e using digital trapezoidal filter

Low power ASIC chip- ADC simulation

1 LSB=1600 mV/1024=1.56 mV

Low power ASIC chip- Integral Nonlinearity

16

Low power ASIC chip- WASA_V0 testing board

Channels: ≤ 128 channels (64 channels available) External power supply: $\pm 5V$, $\pm 12V$, $\pm 24V$

Low power ASIC chip- WASA_V0 testing

Testing parameters:

- GEMs detector: 280V-310 V
- E_{drift} : $\leq 280 \text{ V/cm}$
- Operation gases: $Ar/CF_4/iC_4H_{10} 95/3/2$ (T2K)
- Radioactive source: ⁵⁵Fe@ 1mCi

Low power ASIC chip- Baseline of the noise

Baseline of the noise without detector connecting

Baseline of the noise with TPC detector connecting @ V_{GEM}=0V@E_{drift}=0V/cm

Baseline of the noise with TPC detector connecting @ V_{GEM} =310V@E_{drift}=290V/cm

Low power ASIC chip- WASA_V0 testing

16 channels output waveform

æ

∢ ≣⇒

Low power ASIC chip- preliminary results

Spectrum of Fe-55 2000 ⁵⁵Fe testing: Event number = 23063Successfully Mean =304.52I SB commissioned and 1500 Sigma =34.06LSB collected signals using FWHM =26.34% DAQ Count 1000 Next steps: Using collimator for the 500 radioactive source and taking data from 0 more channels 0 200 400 600 800 and new DAQ to need Amplitude (LSB) (NO funding support)

- dE/dx study used TPC detector using 266nm UV laser
- ⁵⁵Fe and UV laser's energy spectrum and gain measured
- Pseudo-tracks with 220 layers and dE/dx can reach to $3.36 \pm 0.26\%$ of dE/dx by Pad size (1mm imes 6mm)
- Successfully testing and collected signals using the new electronics with the lower power consumption chips

Thanks

イロト イポト イヨト イヨト

2