Yukawa Unification and Sparticle Spectroscopy at the LHC/Tevatron

Qaisar Shafi

Bartol Research Institute Department Physics and Astronomy University of Delaware, USA

in collaboration with Ilia Gogoladze, Rizwan Khalid, Shabbar Raza, Adeel Ajaib, Tong Li and Kai Wang.

(4回) (1日) (日)

Low Scale (\sim TeV) Supersymmetry (SUSY):

- Arguably the most compelling extension of the Standard Model;
- Resolves the gauge hierarchy problem;
- Provides cold dark matter candidate (LSP);
- Implements radiative electroweak symmetry breaking;
- Predicts new particles accessible at the LHC, and thereby enables unification of the SM gauge couplings;

Qaisar Shafi Yukawa Unification and Sparticle Spectroscopy at the LHC/Te

• Supersymmetric SO(10):

 Fermion families reside in 16_i(i=1,2,3) predicts 'right handed' neutrino ⇒ non-zero neutrino masses;

(Cf: SU(5) with families in $\overline{10}_i + \overline{5}_i$)

• Yukawa couplings provide masses to SM fermions. They include

$16_i 16_j 10, 16_i 16_j 126, etc.$

• 16_316_310 yields $t - b - \tau$ unification

$$Y_t = Y_b = Y_\tau = Y_\nu$$

 \rightarrow In the old days it was used to predict the top quark mass!¹

- Nowadays, one employs t b τ unification to make predictions, such as sparticle masses, which can be tested at the LHC/Tevatron (Baer et al.);
- $t b \tau$ unification can also be realized in $SU(4)_c \times SU(2)_L \times SU(2)_R$, a maximal subgroup of SO(10);

CMSSM (mSUGRA):

- Unbroken Z_2 matter parity \Rightarrow stable LSP, typically neutralino;
- Universal soft susy breaking parameters

 $m_0, m_{1/2}, A_0, tan\beta, sign(\mu)$

Alexander Belyaev, Pramana 72:143-160,2009.

- - 4 回 ト - 4 回 ト

Supersymmetric SO(10)(Baer et al.)¹

- m_{16} , m_{10} , M_D , $M_{1/2}$, A_0 , $\tan \beta$, $sign(\mu)$
- $m_{16} \equiv$ Universal soft SUSY breaking sfermion mass
- $m_{10} \equiv$ Universal soft SUSY breaking MSSM Higgs mass
- $M_D \equiv$ The Higgs mass splitting $M_{H_{u,d}}^2 = m_{10}^2 \mp 2M_D^2$
- $m_{1/2} \equiv$ Universal SSB gaugino mass
- $A_0 \equiv$ Universal SSB trilinear interaction

• $\tan\beta = \frac{v_u}{v_d}$

• $\mu \equiv SUSY$ bilinear Higgs parameter

▶ ▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ● の Q @

¹ H. Baer, S. Kraml, S. Sekmen and H. Summy, JHEP 0803, 056 (2008)

• Random scans were performed over the parameter space

<i>m</i> ₁₆ :	$0 \ \rightarrow \ 20 \ {\rm TeV}$	(1 - 20 TeV),
m_{10}/m_{16} :	$0 \ \rightarrow \ 1.5$	(0.8 - 1.4),
$m_{1/2}$:	$0 \ \rightarrow \ 5 \ {\rm TeV}$	$(0-1 \mathrm{TeV}),$
A_0/m_{16}	$-3 \rightarrow 3$	(-2.5 - 1.9),
M_D/m_{16} :	$0 \ \rightarrow \ 0.8$	(0.25 – 0.8),
aneta :	$40 \rightarrow 60$	(46 – 53).

• Quantify Yukawa unification by

$$R = \frac{\max(y_t, y_b, y_\tau)}{\min(y_t, y_b, y_\tau)}$$

白 ト イヨ ト イヨ ト

Constraints

 $m_{\tilde{\chi}_{\star}^{\pm}}$ (chargino mass) $\geq 103.5 \text{ GeV},$ m_h (lightest Higgs mass) ≥ 114.4 GeV, $m_{\tilde{\tau}}$ (stau mass) > 86 GeV. $m_{\tilde{\sigma}}$ (gluino mass) $\geq 220 \text{ GeV}$, $BR(B_{s} \rightarrow \mu^{+}\mu^{-}) < 5.8 \times 10^{-8}$ $0.53 < \frac{BR(B_u \to \tau \nu_\tau)MSSM}{BR(B_u \to \tau \nu_\tau)SM} < 2.03 \ (2\sigma),$ $2.85 \times 10^{-4} < BR(b \rightarrow s\gamma) < 4.24 \times 10^{-4} (2\sigma).$ $\Omega_{\rm CDM} h^2 = 0.111^{+0.028}_{-0.027} (5\sigma),$ $3.4 \times 10^{-10} < \Delta \alpha_{\mu} < 55.6 \times 10^{-10}$ (3 σ).

伺い イヨト イヨト 三日

Qaisar Shafi Yukawa Unification and Sparticle Spectroscopy at the LHC/Te

590

• SUSY and $t - b - \tau$ Yukawa coupling unification

<->→ □→ < ≥→</>

< ≣ >

æ

Radiative contributions to the bottom quark mass from the gluino and chargino loop

$$\frac{\delta m_b}{m_b} \approx \frac{g_3^2}{12\pi^2} \frac{\mu m_{\tilde{g}} \tan\beta}{m_{\tilde{b}}^2} - \frac{y_t^2}{32\pi^2} \frac{\mu A_t \tan\beta}{m_{\tilde{t}}^2} + \dots$$

白 と く ヨ と く ヨ と

H. Baer, S. Kraml, S. Sekmen and H. Summy, JHEP 0803, 056 (2008)

・ロン ・四と ・ヨン ・ヨン

æ

parameter	Pt. A	Pt. D
m ₁₆	9202.9	2976.5
$m_{1/2}$	62.5	107.0
A ₀ ′	-19964.5	-6060.3
<i>m</i> ₁₀	10966.1	3787.9
tan eta	49.1	49.05
M _D	3504.4	1020.8
ft	0.51	0.48
f _b	0.51	0.47
f_{τ}	0.52	0.52
μ	4179.8	331.0
ma	395.6	(387.7)
m _{uĩi}	9185.4	2970.8
m _{f1}	2315.1	434.5
m _{b1}	2723.1	849.3
m _{eĩ}	9131.9	2955.8
$m_{\tilde{\chi}_1^{\pm}}$	128.8	105.7
$m_{\tilde{\chi}_2}^{\chi_1}$	128.6	105.1
$m_{\tilde{\chi_1}}$	55.6	52.6
mA	3273.6	776.8
m _h	125.4	111.1
σ [fb]	75579.1	89666.1
% (<i>ĝĝ</i>)	86.8	80.5
$\% (\tilde{\chi}_{1}^{\pm} \tilde{\chi}_{2}^{\pm})$	8.8	12.8
$\% (\tilde{t_1} \tilde{t_1})^2$	0	1.1

- Lightest colored sparticle is gluino; But $\Omega h^2 >> 1$!!
- DM: Axions, Axinos.

<ロ> (四) (四) (注) (注) (注) (注)

Yukawa Unification and Neutralino DM in $SU(4)_c \times SU(2)_L \times SU(2)_R$ (4-2-2)

I.G, R. Khalid and Q. Shafi, Phys. Rev. D 79, 115004 (2009) .

- SM fermions: $\psi_i = (4, 2, 1)$ and $\psi_i^c = (\bar{4}, 1, 2)$
- MSSM Higgs: H = (1, 2, 2)
- Third family Yukawa coupling $\psi \psi^{c} \mathbf{H}$ yields

$$Y_t = Y_b = Y_\tau = Y_\nu$$

Asymptotic relation between the three MSSM gaugino masses

$$M_1 = \frac{3}{5}M_2 + \frac{2}{5}M_3$$

• One additional parameter compared to the SO(10) model (from gaugino non-universality)

We performed random scans for the following parameter range

$$0 \leq m_{16} \leq 20 \,\mathrm{TeV},$$

$$0 \leq M_2 \leq 1 \,\mathrm{TeV},$$

$$0 \leq M_3 \leq 1 \,\mathrm{TeV},$$

$$-3 \leq A_0/m_{16} \leq 0,$$

$$0 \leq M_D/m_{16} \leq 0.95,$$

$$0 \leq m_{10}/m_{16} \leq 1.5,$$

$$40 \leq \tan\beta \leq 58,$$

$$\mu > 0, \qquad m_t = 172.6 \,\mathrm{GeV}.$$

・回 ・ ・ ヨ ・ ・ ヨ ・

æ

Constraints

 $m_{\tilde{\chi}_{\star}^{\pm}}$ (chargino mass) $\geq 103.5 \text{ GeV},$ m_h (lightest Higgs mass) ≥ 114.4 GeV, $m_{\tilde{\tau}}$ (stau mass) > 86 GeV. $m_{\tilde{\sigma}}$ (gluino mass) $\geq 220 \text{ GeV}$, $BR(B_{s} \rightarrow \mu^{+}\mu^{-}) < 5.8 \times 10^{-8}$ $0.53 < \frac{BR(B_u \to \tau \nu_\tau)MSSM}{BR(B_u \to \tau \nu_\tau)SM} < 2.03 \ (2\sigma),$ $2.85 \times 10^{-4} < BR(b \rightarrow s\gamma) < 4.24 \times 10^{-4} (2\sigma).$ $\Omega_{\rm CDM} h^2 = 0.111^{+0.028}_{-0.027} (5\sigma),$ $3.4 \times 10^{-10} < \Delta \alpha_{\mu} < 55.6 \times 10^{-10}$ (3 σ).

伺い イヨト イヨト 三日

Qaisar Shafi

Yukawa Unification and Sparticle Spectroscopy at the LHC/Te

	Point 1	Point 2	Point 3
m ₁₆	14110	8429	13124
M_2	832.03	1020.2	689.4
M_3	0.7945	60.542	9.6261
$tan \beta$	50.82	46.41	51.17
M_D/m_{16}	0.4543	0.5595	0.3323
m_{10}/m_{16}	0.7741	1.1584	1.3048
A_0/m_{16}	-2.4487	-2.1527	-1.8226
m_h	123	126	127
m_H	7569	2163	9882
m_A	7520	2150	9818
m_{H^\pm}	7571	2175	9883
$m_{ ilde{\chi}^{\pm}_{1,2}}$	887 ,13869	975 ,4047	712 ,3750
$m_{ ilde{\chi}_{12}^0}$	283, 885	319 ,974	228 ,712
$m_{ ilde{\chi}^0_{3,4}}$	13879,13879	4049,4049	3784,3785
$m_{\widetilde{g}}$	325	365	265
$m_{ ilde{u}_{L,R}}$	14126,13916	8435,8361	13140,12841
$m_{ ilde{t}_{1,2}}$	5337,5726	1911 ,2640	4931,5310
$m_{ ilde{d}_{LR}}$	14126,14203	8435,8455	13141,13249
$m_{\tilde{b}_{1,2}}$	5237,5653	2521,2767	4115,5146
$m_{\tilde{\nu}_1}$	13988	8409	12926
$m_{ ilde{ u}_3}$	10598	6577	9535
$m_{ ilde{e}_{L,R}}$	13988,14376	8408,8514	12926,13500
$m_{ ilde{ au}_{1,2}}$	6412,10581	4270,6573	5580,9559
μ	14100	4110	3840
$\Omega_{LSP}h^2$	0.095	0.112	0.116
R	1.00	1.07	1.09

・ロト・(四ト・(川下・(日下・(日下)

Yukawa unification with negative μ term

- Yukawa unification prefers $\mu < 0$
- Dominant contributions to the bottom quark mass from the gluino and chargino loop

$$\delta m_b \approx \frac{g_3^2}{12\pi^2} \frac{\mu m_{\tilde{g}} \tan \beta}{m_{\tilde{b}}^2} - \frac{y_t^2}{32\pi^2} \frac{\mu A_t \tan \beta}{m_{\tilde{t}}^2} + \dots$$

- Dominant contribution to the muon anomalous magnetic moment for large tan β case is $\Delta \alpha_{\mu}^{SUSY} \propto \mu M_2 \tan \beta / \tilde{m}^4$
- In 4-2-2 model with left-right symmetry, M_2 and M_3 are free parameters
- We can have $\mu < 0$, $M_2 < 0$ and $M_3 > 0$

向下 イヨト イヨト ニヨ

We performed random scans for the following parameter range

・回 ・ ・ ヨ ・ ・ ヨ ・

æ

Green points satisfy all constraints. Points in red represent $R \leq 1.1$

・ロト ・日本 ・モート ・モート

Brown points satisfy all constraints and $R \leq 1.1$

<ロ> (四) (四) (日) (日) (日)

Dark matter indirect detection

Brown points satisfy all constraints and $R \leq 1.1$

∢ ≣⇒

Dark matter direct detection

Brown points satisfy all constraints and $R \leq 1.1$

- < ≣ →

æ

		D 1 4 A	B 1 4 A		
	Point 1	Point 2	Point 3	Point 4	Point 5
<i>m</i> 0	1027	1800	1210	980	1720
M_1	-665	-81	-414	-126	-538
M_2	-1475	-543	-940	-517	-943
M ₃	550	611	374	460	70
aneta	49.1	52.8	50.6	47.0	47.6
A_0 / m_0	0.26	1.06	-1.15	-1.08	-1.25
m _{Hu}	743	1919	1231	1090	295
m _{Hd}	1505	2395	1745	1869	1729
m _h	114	115	114	115	115
m _H	847	573	781	1100	1006
mA	841	569	776	1090	1000
$m_{H\pm}$	852	581	787	1100	1010
$m_{\tilde{\chi}_{1,2}^0}$	280,341	43,352	168,242	56,337	<mark>233</mark> ,782
$m_{\tilde{\chi}^0_{3,4}}$	352,1236	380,513	246,795	371,476	1210,1216
$m_{\tilde{\chi}_{1,2}^{\pm}}$	342,1225	355,509	239,786	338,475	782,1217
m _ĝ	1321	1470	955	1110	270
m _{ũIR}	1771,1489	2170,2130	1550,1410	1400,1320	1818,1697
$m_{\tilde{t}_{1,2}}$	1053,1410	1400,1440	822,1040	826,965	1070,1248
m _{di R}	1773,1512	2180,2160	1550,1440	1400,1370	1820,1730
m _{b1.2}	954,1399	1350,1430	774,1020	724,906	992,1245
m _{ũ1}	1391	1810	1340	1000	1807
$m_{\tilde{\nu}_3}$	1211	1420	1100	759	1550
m _{ẽl.R}	1393,1096	1820,1820	1340,1250	1010,1040	1809,1763
$m_{\tilde{\tau}_{1,2}}$	500,1212	885,1420	641,1110	462,765	1170,1554
$\sigma_{SI}(pb)$	4.02×10^{-8}	$4.1 imes 10^{-9}$	$4.1 imes 10^{-8}$	$9.5 imes 10^{-10}$	1.1×10^{-10}
$\sigma_{SD}(pb)$	$8.4 imes 10^{-5}$	$7.5 imes 10^{-6}$	$1.7 imes 10^{-4}$	$8.2 imes 10^{-6}$	$2.9 imes 10^{-8}$
$\Omega_{CDM} h^2$	0.08	0.11	0.09	0.08	0.11
R	1.01	1.11	1.09	1.07	1.08
$g_3/g_1(M_{\rm GUT})$	0.98	0.98	0.99	0.98	1.00

Qaisar Shafi

Yukawa Unification and Sparticle Spectroscopy at the LHC/Te

Yukawa Unification & NLSP gluino search at Hadron Colliders

- Yukawa unification predicts light gluino, heavy scalars and is compatible with gluino-bino coannihilation with gluino as NLSP.
- Conventional gluino searches with small SM background

$$\tilde{g}\tilde{g} \rightarrow jets + \tilde{\chi}_1^{\pm}\tilde{\chi}_1^{\pm} \rightarrow jets + l^{\pm}l^{\pm} + \not{ET}.$$

• For NLSP gluino these channels are absent and we consider the parameter space region with dominant contributions from gluino three body decay $b\bar{b}\tilde{\chi}_1^0$

$$pp, p\bar{p} \rightarrow \tilde{g}\tilde{g} \rightarrow b\bar{b}b\bar{b} + \not{E}_T.$$

向下 イヨト イヨト

Potential SM backgrounds considered

$$b\bar{b}b\bar{b}, \ b\bar{b}b\bar{b}Z \rightarrow b\bar{b}b\bar{b}\nu\bar{\nu}, \ jjb\bar{b}Z \rightarrow jjb\bar{b}\nu\bar{\nu}$$

 We choose two benchmark points from previously described 4-2-2 models

	$M_{\tilde{g}}$ (GeV)	$M_{ ilde{\chi}_1^0}$ (GeV)	$M_{\tilde{b}_1}$ (GeV)	${\sf Br}(ilde{g} o b ar{b} ilde{\chi}^0_1)$
Model A ($\mu > 0$)	329	284	5294	76.3%
Model B($\mu < 0$)	261	207	950	50.8%

• For Tevatron, we employ the following event selection cuts

$$p_T^\prime > 15 \,\, ext{GeV}, |\eta_j| < 1.0 \,\,, \Delta R_{jj} > 0.4$$

向下 イヨト イヨト

• The production cross section for the two points for Tevatron

$\sigma(\mathrm{fb})$ @ Tevatron	Model A	Model B	bbbb	bbbbZ	jjb₽Z	S/\sqrt{B}
basic cuts						
and 3b tagging	2.3	4.8	$2.7 imes 10^3$	0.02	1	
$\not E_T > 30 \text{ GeV}$	1.4	3.3	_	0.019	0.95	4.5(A)/11(B)

• The production cross section for the two points for LHC

$\sigma(fb)$ @ 7 TeV LHC	Model A	Model B	bbbb	bbbbZ	jjb₽Z
basic cuts					
and 3b tagging	286	541	$314 imes10^3$	1.1	15
$\not E_T > 40 \text{ GeV}$	117	280	_	0.8	12

3

Summary

- In supersymmetric and L-R symmetric $SU(4)_c \times SU(2)_L \times SU(2)_R$ model with gravity mediated supersymmetry breaking, $t b \tau$ Yukawa coupling unification is consistent with neutralino dark matter abundance and with all constraints from collider experiments (except $(g 2)_{\mu}$)for $\mu > 0$. For $\mu < 0$ we can have Yukawa unification satisfying all current constraints.
- The model for $\mu > 0$ predicts a very characteristic sparticle spectrum: very heavy sfermions (> 5 TeV) but relatively light gluinos (\gtrsim 300 GeV).
- For μ < 0, Yukawa unification can be achieved with relatively light sparticle spectrum O(600) GeV. NLSP gluino can be tested at LHC/Tevatron.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

- NLSP gluino search at Tevatron and 7 TeV LHC through multi-b jets $\tilde{g}\tilde{g} \rightarrow b\bar{b}b\bar{b}\tilde{\chi}_1^0\tilde{\chi}_1^0$.
- With 10 fb^{-1} luminosity one can reach 5σ at Tevatron after selection cuts. At 7 Tev LHC the signal is at least one order of magnitude larger than leading backgrounds.

□→ ★ 注 → ★ 注 → □ 注