CP violating lepton asymmetry from semileptonic B decays as a probe of new physics

Yukihiro Mimura 御村幸宏 (National Taiwan University)

```
Based on in Collaboration with B. Dutta and Y. Santoso Phys. Rev. Lett. 97, 241802 (2006); Phys. Lett. B677, 164 (2009); Phys. Rev. D80, 095005 (2009); ibid. 82, 055017 (2010) in Collaboration with B. Dutta, S. Khalil, and Q. Shafi in prepearation
```

LHEP2010, Nanning (2010.11.18)

Menu

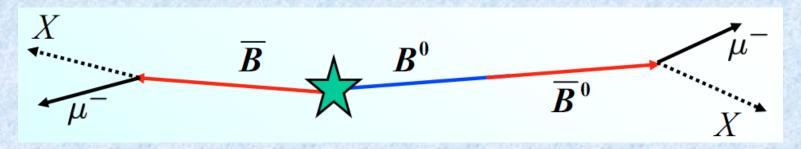
- 1. Introduction
- 2. CP asymmetry in semi-leptonic B decays

 Experimental result vs. SM prediction
- 3. New Physics (NP) contributions

Review

- 4. Origin of FCNCs in SUSY GUTs
 SU(5) with type I seesaw vs. SO(10) with type II seesaw
- 5. Constraints from $au o \mu \gamma$ in SUSY GUTs

Dimuon charge asymmetry of semileptonic B decay [D0]



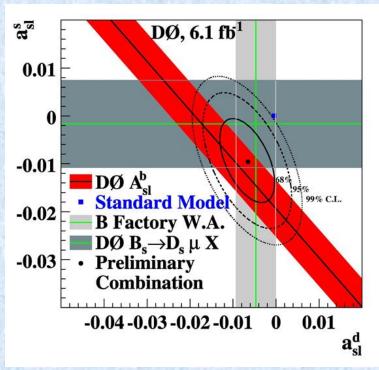
$$A_{sl}^{b} \equiv \frac{N_{b}^{++} - N_{b}^{--}}{N_{b}^{++} + N_{b}^{--}} \qquad \qquad \begin{array}{c} b \to \mu^{-} \bar{\nu} X \\ \bar{b} \to \mu^{+} \nu X \end{array}$$

$$A_{sl}^b = -0.00957 \pm 0.00251 (stat) \pm 0.00146 (syst)$$

$$A_{sl}^b(SM) = (-2.3_{-0.6}^{+0.5}) \times 10^{-4}$$

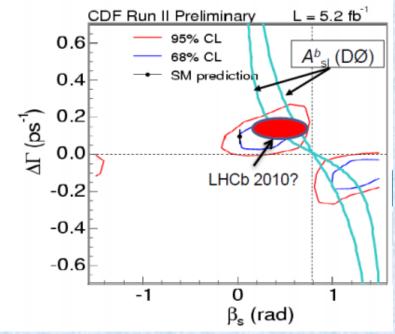
3.2 sigma deviation from SM

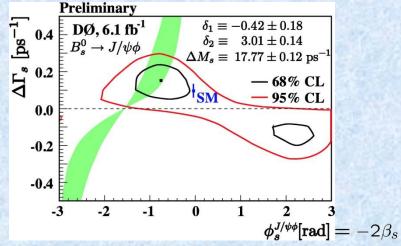
Asymmetry from semi-leptonic decay



$$a_{sl}^{q} \equiv \frac{\Gamma(\bar{B}_{q}^{0} \to \mu^{+} X) - \Gamma(B_{q}^{0} \to \mu^{-} X)}{\Gamma(\bar{B}_{q}^{0} \to \mu^{+} X) + \Gamma(B_{q}^{0} \to \mu^{-} X)}$$
$$a_{sl}^{q} = \operatorname{Im} \frac{\Gamma_{q}^{12}}{M_{q}^{12}} = \left| \frac{\Gamma_{q}^{12}}{M_{q}^{12}} \right| \sin \phi_{q}$$

From $B_s \to J/\psi \phi$ decay





A hint of a large CP violating phase in Bs system!

B_q - \bar{B}_q oscillations (q=d,s)

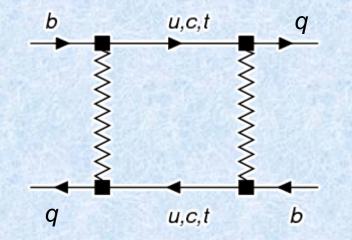
$$i\frac{d}{dt} \begin{pmatrix} B_{q}(t) \\ \bar{B}_{q}(t) \end{pmatrix} = \begin{pmatrix} \begin{pmatrix} M_{11}^{q} & M_{12}^{q} \\ M_{21}^{q} & M_{22}^{q} \end{pmatrix} - \frac{i}{2} \begin{pmatrix} \Gamma_{11}^{q} & \Gamma_{12}^{q} \\ \Gamma_{21}^{q} & \Gamma_{22}^{q} \end{pmatrix} \end{pmatrix} \begin{pmatrix} B_{q}(t) \\ \bar{B}_{q}(t) \end{pmatrix}$$

$$\frac{q}{p} = \sqrt{\frac{M_{12}^* - \frac{i}{2}\Gamma_{12}^*}{M_{12} - \frac{i}{2}\Gamma_{12}}}$$

$$r \equiv \frac{P(\bar{B} \to B)}{P(\bar{B} \to \bar{B})} = \left| \frac{q}{p} \right|^2 \frac{x^2 + y^2}{2 + x^2 - y^2}$$

$$\bar{r} \equiv \frac{P(B \rightarrow \bar{B})}{P(B \rightarrow B)} = \left| \frac{p}{q} \right|^2 \frac{x^2 + y^2}{2 + x^2 - y^2}$$

$$x = \frac{\Delta M}{\Gamma}$$
 $y = \frac{\Delta \Gamma}{2\Gamma}$



$$\Delta M_q = 2|M_{12}^q|$$

$$\Delta \Gamma_q = 2|\Gamma_{12}^q|\cos\phi_q$$

$$\phi_q \equiv \arg\left(-\frac{M_{12}^q}{\Gamma_{12}^q}\right)$$

$$\overline{B}$$
 \overline{B}
 \overline{B}
 \overline{B}
 \overline{B}
 \overline{B}

$$a_{sl}^{q} = \frac{n(B_{q}B_{q}) - n(\bar{B}_{q}\bar{B}_{q})}{n(B_{q}B_{q}) + n(\bar{B}_{q}\bar{B}_{q})} = \frac{r - \bar{r}}{r + \bar{r}} = \frac{\left|\frac{q}{p}\right|^{2} - \left|\frac{p}{q}\right|^{2}}{\left|\frac{q}{p}\right|^{2} + \left|\frac{p}{q}\right|^{2}}$$

$$= \frac{\operatorname{Im} \frac{\Gamma_{12}^{q}}{M_{12}^{q}}}{1 + \frac{1}{4} \left| \frac{\Gamma_{12}^{q}}{M_{12}^{q}} \right|^{2}}$$

$$\simeq \operatorname{Im} rac{\Gamma_{12}^q}{M_{12}^q}$$

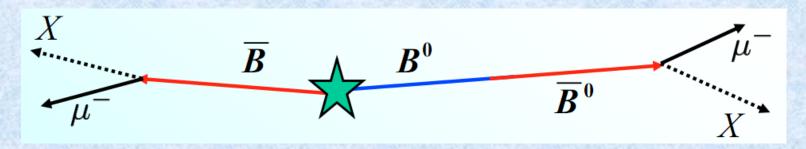
$$\frac{q}{p} = \sqrt{\frac{M_{12}^* - \frac{\imath}{2} \Gamma_{12}^*}{M_{12} - \frac{\imath}{2} \Gamma_{12}}}$$

$$\Delta M_q = 2|M_{12}^q|$$

$$\Delta \Gamma_q = 2|\Gamma_{12}^q|\cos\phi_q$$

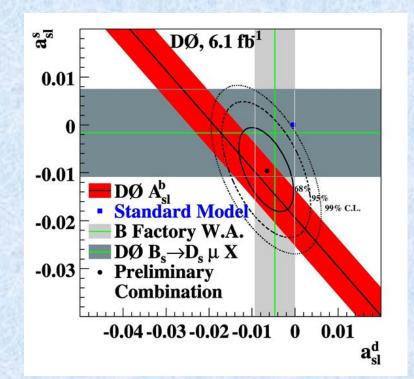
$$\phi_q \equiv \arg\left(-\frac{M_{12}^q}{\Gamma_{12}^q}\right)$$

$$=\left|rac{\Gamma_{12}^q}{M_{12}^q}
ight|\sin\phi_q = rac{\Delta\Gamma_q}{\Delta M_q} an\phi_q$$



$$A_{sl}^{b} = \frac{n(B_{d}B_{d}) - n(\bar{B}_{d}\bar{B}_{d}) + n(B_{s}B_{s}) - n(\bar{B}_{s}\bar{B}_{s})}{n(B_{d}B_{d}) + n(\bar{B}_{d}\bar{B}_{d}) + n(B_{s}B_{s}) + n(\bar{B}_{s}\bar{B}_{s})}$$

$$= (0.506 \pm 0.043)a_{sl}^d + (0.494 \pm 0.043)a_{sl}^s$$



(Tevatron)

$$a_{sl}^d({\rm SM}) = (-4.8^{+1.0}_{-1.2}) \times 10^{-4}$$
 $a_{sl}^s({\rm SM}) = (2.1 \pm 0.6) \times 10^{-5}$ (Lenz-Nierste)

$$A_{sl}^b(SM) = (-2.3_{-0.6}^{+0.5}) \times 10^{-4}$$



(picked up from T.Nakata's talk at CPV conf. at Tohoku U)

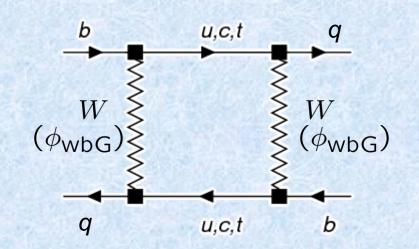
It will be tested very accurately at LHCb.

Why is SM prediction so small?

⇒ Because of unitarity of CKM matrix.

Standard model prediction

$$M_{12}^q \propto \sum_{i,j=u,c,t} \lambda_i^q \lambda_j^q E(x_i,x_j)$$



$$M_{12}^q \propto (V_{tb}V_{tq}^*)^2$$

$$\lambda_i^q = V_{ib}V_{iq}^* \qquad x_i = \frac{m_i^2}{M_W^2}$$

$$\lambda_u^q + \lambda_c^q + \lambda_t^q = 0$$

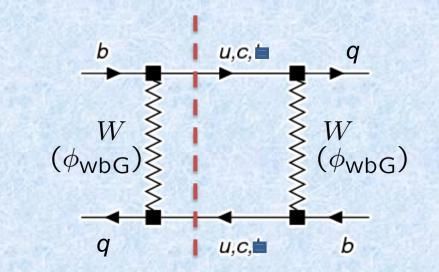
$$M_{12}^q \propto \sum_{i,j=c,t} \lambda_i^q \lambda_j^q \underbrace{(E(x_i,x_j) - E(x_u,x_j) - E(x_i,x_u) + E(x_u,x_u))}_{}$$

$$x_i x_j \left(\frac{(4 - 8x_i + x_i^2) \ln x_i}{4(1 - x_i)^2 (x_i - x_j)} + \frac{(4 - 8x_j + x_j^2) \ln x_j}{4(1 - x_j)^2 (x_j - x_i)} - \frac{3}{4(1 - x_i)(1 - x_j)} \right)$$

(Inami-Lim function)

Standard model prediction

$$\Gamma_{12}^q \propto \sum_{i,j=u,c} \lambda_i^q \lambda_j^q \gamma_{ij}$$
 (Leading order)



$$\Gamma_{12}^q \propto (V_{tb}V_{tq}^*)^2$$

$$\lambda_i^q = V_{ib}V_{iq}^*$$

$$\lambda_u^q + \lambda_c^q + \lambda_t^q = 0$$

$$\Gamma_{12}^q \propto (\lambda_u^q)^2 + 2\lambda_u^q \lambda_c^q + (\lambda_c^q)^2 = (\lambda_u^q + \lambda_c^q)^2$$
 up to $O(m_c^2/m_b^2)$

$$\gamma_{uu}\simeq 1$$
, $\gamma_{uc}\simeq 1-rac{4m_c^2}{3m_b^2}$, and $\gamma_{cc}\simeq 1-rac{8m_c^2}{3m_b^2}$

① Unitarity:
$$\lambda_u^q + \lambda_c^q + \lambda_t^q = 0$$

$$\rightarrow \phi_q$$
: small

$$\frac{\Gamma_{12}}{M_{12}} \sim -\frac{3\pi}{2} \frac{m_b^2}{m_t^2} \frac{1}{F_{IL}(x_t)} \times (1 + O(m_c^2/m_b^2))$$

$$\Delta M_q = 2|M_{12}^q|$$

$$\Delta \Gamma_q = 2|\Gamma_{12}^q|\cos\phi_q$$

$$\phi_q \equiv \arg\left(-\frac{M_{12}^q}{\Gamma_{12}^q}\right)$$

$$a_{sl}^q = \left|\frac{\Gamma_{12}^q}{M_{12}^q}\right|\sin\phi_q$$

Smallness of the dimuon asymmetry is an important prediction in the standard model (with 3 generations).

Lenz-Nierste's calculations

$$[O(\alpha_s) \text{ and } O(\Lambda/m_b)]$$

$$\frac{\Delta\Gamma_d}{\Delta M_d} = (52.6^{+11.5}_{-12.8}) \times 10^{-4}$$
$$\phi_d = -0.091^{+0.026}_{-0.038}$$

$$\Delta M_q = 2|M_{12}^q|$$

$$\Delta \Gamma_q = 2|\Gamma_{12}^q|\cos\phi_q$$

$$\phi_q \equiv \arg\left(-\frac{M_{12}^q}{\Gamma_{12}^q}\right)$$

$$a_{sl}^q = \left|\frac{\Gamma_{12}^q}{M_{12}^q}\right|\sin\phi_q$$

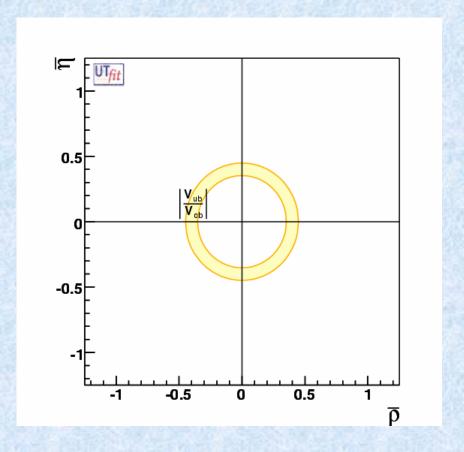
$$\frac{\Delta\Gamma_s}{\Delta M_s} = (49.7 \pm 9.4) \times 10^{-4}$$
 $\phi_s = 0.0042 \pm 0.0014$

When new particles propagate in the loop, the phase can be generically large.

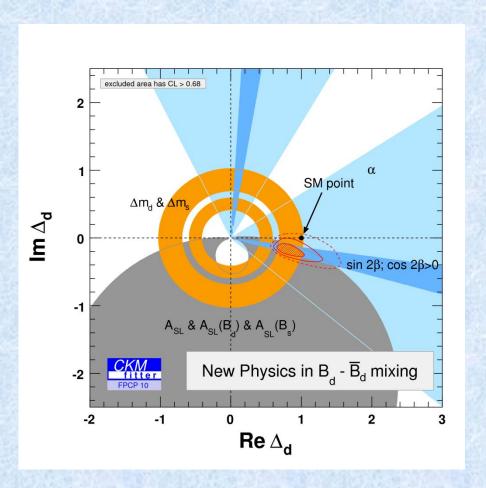
Important probe of new physics.

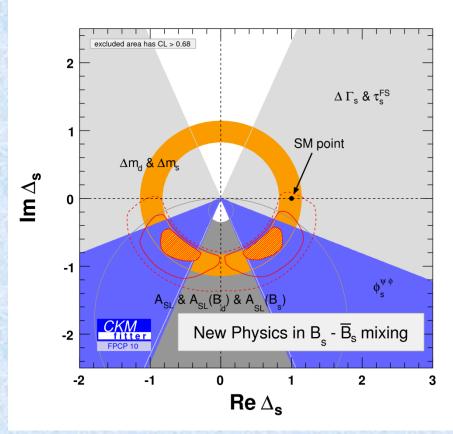
What kinds of new physics are possible?

Unitary triangle $(\lambda_u^d + \lambda_c^d + \lambda_t^d = 0)$ seems to be closed.



There may be no much room for new physics in B_d system.

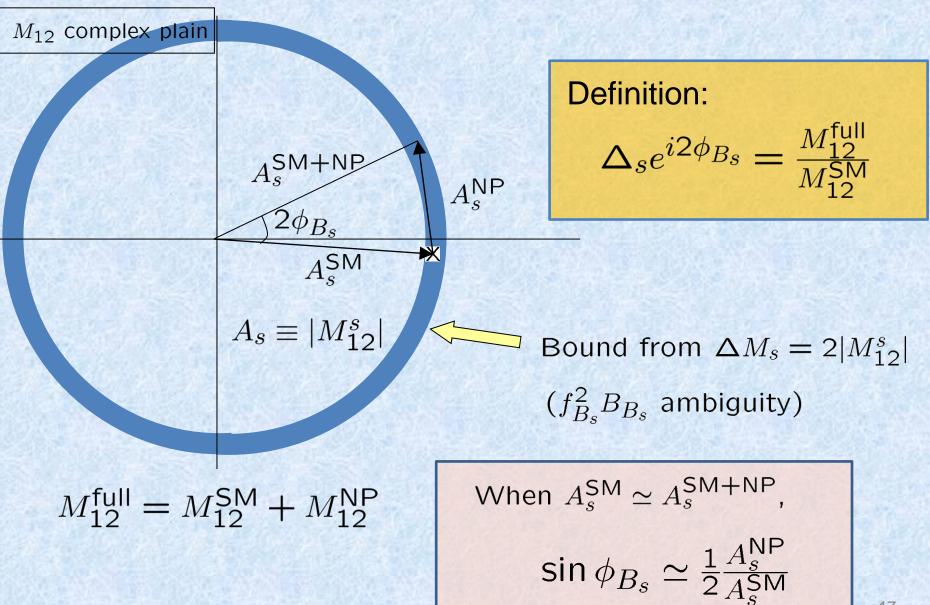




[$\sin 2\beta$ - V_{ub} descrepancy?]

Definition:
$$|\Delta_q|e^{i2\phi_{Bq}} = \frac{M_{12}^{q,\mathrm{full}}}{M_{12}^{q,\mathrm{SM}}}$$

Bs system still has room for new physics due to phase freedom.



$$\Delta M_s^{\rm exp} = (17.77 \pm 0.10 \pm 0.07) \ {\rm ps^{-1}}$$

$$\Delta M_s^{\rm SM} = (19.30 \pm 6.74) \ {\rm ps}^{-1}$$

Now improving!

 $\sim 15\%$

$$\Delta_s = \frac{\Delta M_s^{\text{exp}}}{\Delta M_s^{\text{SM}}} = 0.92 \pm 0.32$$

(mainly $f_{B_s}^2 B_{B_s}$ ambiguity)

When there is no NP in Bd system,

$$\Delta M_s^{\text{SM}} = \frac{M_{B_s}}{M_{B_d}} \left| \frac{V_{ts}}{V_{td}} \right|^2 \underbrace{\frac{f_{B_s}^2 B_{B_s}}{f_{B_d}^2 B_{Bd}}} \Delta M_d^{\text{exp}}$$
$$= (18.3 \pm 1.3) \text{ ps}^{-1}$$

$$\Delta_s = \frac{\Delta M_s^{\text{exp}}}{\Delta M_s^{\text{SM}}} = 0.95 \pm 0.095$$

Is the M_{12} phase modification sufficient to achieve the center value of D0 result?

No.

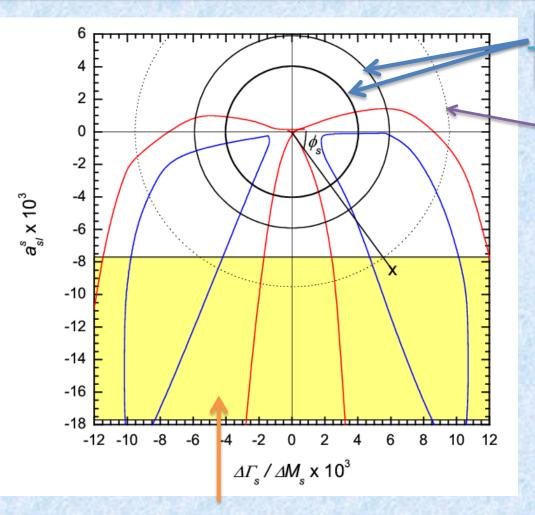
$$a_{sl}^s = \left| \frac{\Gamma_s^{12}}{M_s^{12}} \right| \sin \phi_s = \frac{\Delta \Gamma_s}{\Delta M_s} \tan \phi_s$$

$$(a_{sl}^s)^2 + \left(\frac{\Delta \Gamma_s}{\Delta M_s}\right)^2 = \left|\frac{\Gamma_s^{12}}{M_s^{12}}\right|^2 = \frac{1}{\Delta_s^2} \left|\frac{\Gamma_s^{12}}{M_s^{12}}\right|^2_{\text{SM}}$$

$$\left| \frac{\Gamma_{12}^s}{M_{12}^s} \right|_{\text{SM}} = (4.97 \pm 0.94) \times 10^{-3}$$
 (Lenz-Nierste)

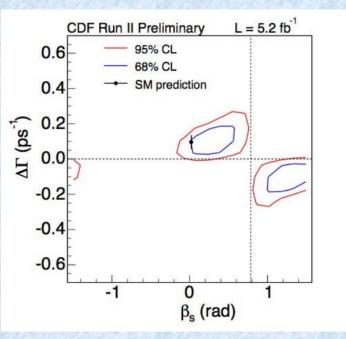
$$\Gamma_{12} = \Gamma_{12}^{\text{SM}}$$
 is assumed.

$$(a_{sl}^s)^2 + \left(\frac{\Delta \Gamma_s}{\Delta M_s}\right)^2 = \left|\frac{\Gamma_s^{12}}{M_s^{12}}\right|^2 = \frac{1}{\Delta_s^2} \left|\frac{\Gamma_s^{12}}{M_s^{12}}\right|^2_{SM}$$



$$\begin{vmatrix} \frac{\Gamma_{12}^s}{M_{12}^s} \end{vmatrix}_{\mathsf{SM}} = (4.97 \pm 0.94) \times 10^{-3}$$
 $\Delta_S = 1$

Conservative region $\Delta_s = 0.6$



$$a_{\rm SI}^s = (-12.7 \pm 5.0) \times 10^{-3}$$
 (Combined data) assuming $a_{sl}^d = a_{sl}^d({\rm SM})$

$$M_{12}^s$$
 modification

by
$$\Delta b = 2$$
 interaction Loop processes

It is easy to modify its phase in many FCNC models. CPV in $B_s \to J/\psi \phi$ decay is large.

Γ_{12}^s modification

by
$$\Delta b = 1$$
 interaction

Necessary to achieve the center value of D0 result.

But it is not so easy because of experimental constraints.

Long distance QCD contribution?

M_{12}^s modification

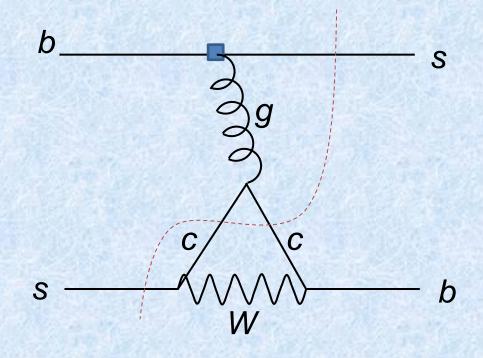
- SUSY
- 4th generation
- TeV scale vector-like family
- multiple Higgs
- horizontal gauge symmetry
- right-handed W
- extra U(1)
- axigluon
- warped model

•

Γ_{12}^s modification

- R-parity violating SUSY
- leptoquark
- diquark
- multiple Higgs
- light bosons
- unparticle
- CPT violation
-

Modification of Γ_{12} in MSSM?



bs gluon penguin $b o sc \overline{c}$

However, $b \to ss\bar{s}$, $b \to sd\bar{d}$, $b \to su\bar{u}$ are constrained from $B_d \to \phi K$, πK .

Only O(10) % modification

Allowed $\Delta b = 1$ operators (Bauer-Dunn)

$$\cdot (\bar{b}\gamma_{\mu}s)(\bar{c}\gamma^{\mu}c)$$

$$\cdot (\bar{b}\gamma_{\mu}s)(\bar{\tau}\gamma^{\mu}\tau)$$

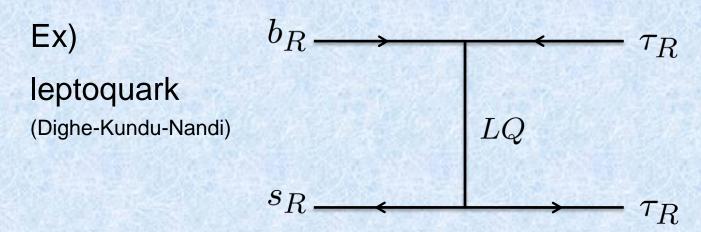
$$\cdot (\bar{b}\gamma_{\mu}d)(\bar{u}\gamma^{\mu}c)$$

$$\cdot (\bar{b}d)(\bar{u}c)$$

constraints

$$\cdot \ B \to M_1 M_2, \ B \to \ell^+ \ell^-$$

$$b \rightarrow s\gamma$$



In general, it is not easy due to the constraint of lifetime ratio.

Fine-tune is needed.

$$\tau_{B_s}/\tau_{B_d}$$
=0.965±0.017

The scheme in PRD 82, 055017 (2010)

(Dutta-YM-Santoso)

- ullet Dimuon asymmetry comes from the mixing amplitude $\,M_{12}^s$
- Modification from Γ_{12} (by Lenz-Nierste) is not considered. (giving up the center value of D0 result).
- We do not touch the modification of Bd mixing.
- We will investigate the constraints to have the large CP phase in SUSY GUT FCNC scenarios.

Basic Scenario of flavor violation in SUSY GUTs

Too much FCNCs in general SUSY breaking masses.

Flavor universality of SUSY breaking is assumed.

Even if so, FCNCs are induced by RGEs.

In MSSM, the quark FCNCs are small due to tiny CKM mixings.

If there is a heavy particle, the loop corrections can induce sizable FCNCs. (e.g. right-handed neutrino)

(Borzumati-Masiero)

Investigating accurate measurement of FCNCs in quarks and leptons is very important to find a footprint of the GUT models.

In GUT models,

$$au
ightarrow \mu \gamma$$
 and $B_s ext{-} ar{B}_s$ mixing are related.

Experimental data for Lepton Flavor Violation (LFV)

$$\mathrm{Br}(au o \mu \gamma) < 4.4 imes 10^{-8}$$
 (Babar & Belle)

bounds the phase of B_s - \bar{B}_s mixing.

(YM-Dutta, Parry, Hisano-Shimizu, Park-Yamaguchi, Goto et.al. ...)

We will study the constraints to obtain the large CP phase and the correlation to the other observables (e.g. $B_s \rightarrow \mu\mu$) in SU(5) and SO(10) GUT models.

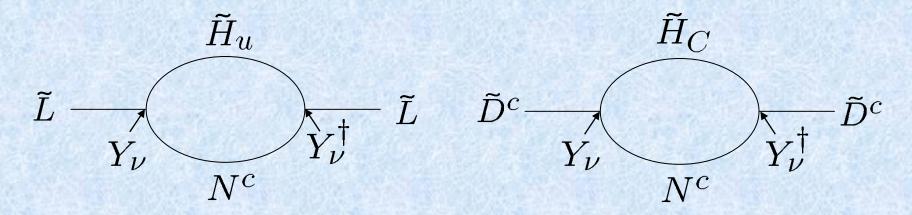
SU(5) GUT

Down quarks (D^c) and lepton doublet (L) are unified in $\overline{\bf 5}$.

 Q, U^c, E^c : 10

Right-handed neutrino : N^c

$$W_Y = Y_u \, \mathbf{10} \cdot \mathbf{10} \, H_5 + Y_d \, \mathbf{10} \cdot \overline{5} \, H_{\overline{5}} + Y_{\nu} \, \overline{5} \, N^c \, H_5$$



Both RH down-squarks and LH sleptons can have FCNC effects.

(Moroi, Akama-Kiyo-Komine-Moroi, Baek-Goto-Okada-Okumura, ...)

$$m_{\tilde{D}}^2 \simeq m_5^2 \simeq m_0^2 \left({f 1} - \kappa \, U \left(egin{array}{ccc} k_1 & & \\ & k_2 & \\ & & {f 1} \end{array}
ight) U^\dagger
ight) & \kappa : {
m coefficient} \ U : {
m unitary matrix}$$

$$(m_5^2)_{23} = -\frac{1}{2}m_0^2 \frac{\kappa \sin 2\theta_{23} e^{i\alpha}}{\kappa}$$
 Origin of $\phi_s^{\rm NP}$ size of $A_s^{\rm NP}$

$$A_s = |M_{12}^s|$$

$$\frac{M_{12}^{\text{full}}}{M_{12}^{\text{SM}}} = \frac{A_s^{\text{SM}} e^{-2i\beta_s} + A_s^{\text{NP}} e^{2i(\phi_s^{\text{NP}} - \beta_s)}}{A_s^{\text{SM}} e^{-2i\beta_s}} \equiv \Delta_s e^{2i\phi_{B_s}}$$

Cf.
$$(m_5^2)_{13} = m_0^2 \kappa (-\frac{1}{2} k_2 \sin 2\theta_{12} \sin \theta_{23} + e^{i\delta} \sin \theta_{13} \cos \theta_{23}) e^{i\beta}$$

 $(m_5^2)_{12} = m_0^2 \kappa (-\frac{1}{2} k_2 \sin 2\theta_{12} \cos \theta_{23} - e^{i\delta} \sin \theta_{13} \sin \theta_{23}) e^{i(\beta - \alpha)}$

SO(10) GUT

All Q, U^c, D^c, L, E^c, N^c are unified in 16.

$$h \, \mathbf{16} \cdot \mathbf{16} \, H_{10} + f \, \mathbf{16} \cdot \mathbf{16} \, H_{\overline{126}} + h' \mathbf{16} \cdot \mathbf{16} \, H_{120}$$

$$Y_{u} = h + r_{2}f + r_{3}h'$$

$$Y_{d} = r_{1}(h + f + h')$$

$$Y_{e} = r_{1}(h - 3f + c_{e}h')$$

$$Y_{\nu} = h - 3r_{2}f + c_{\nu}h'$$

$$M_{\nu}^{\text{light}} = M_{L} - Y_{\nu}M_{R}^{-1}Y_{\nu}^{\mathsf{T}}v_{u}^{2}$$

$$Type \, \mathsf{II}$$

$$M_{L} = f_{L}\langle \Delta_{L}^{0} \rangle \qquad M_{R} = f_{R}\langle \Delta_{R}^{0} \rangle$$

$$\mathsf{SU}(2)_{L} \, \mathsf{triplet}$$

Naively,
$$U_{L,R} \sim 1$$
. $(Y_{\nu} = U_{L}Y_{\nu}^{\text{diag}}U_{R}^{\dagger})$

The right-handed neutrino loop effects are not very large.

However, $f \, {\bf 16} \cdot {\bf 16} \, H_{\overline{126}}$ coupling can have a source of large mixings.

The coupling includes the Majorana couplings : $f_L L L \Delta_L + f_R L^c L^c \Delta_R$

The relative mixings between *h* and *f* couplings give the large neutrino mixings.

$$h = \begin{pmatrix} c \\ b \\ a \end{pmatrix} \begin{pmatrix} c & b & a \end{pmatrix}, \quad f = \begin{pmatrix} f_1 \\ f_2 \\ f_3 \end{pmatrix} \qquad \tan \theta_s = -\frac{c}{b} \\ \tan \theta_a = \frac{\sqrt{b^2 + c^2}}{a}$$

$$U_0 h U_0^t = \operatorname{diag}(0, 0, h_3) \quad \text{(h: rank 1)}$$

$$U_0 = \begin{pmatrix} \cos \theta_s & \sin \theta_s & 0 \\ -\cos \theta_a \sin \theta_s & \cos \theta_a \cos \theta_s & -\sin \theta_a \\ -\sin \theta_a \sin \theta_s & \sin \theta_a \cos \theta_s & \cos \theta_a \end{pmatrix}$$

$$U_{\text{MNSP}} = \tilde{V}_e^* U_0 \qquad \tilde{V}_e^* \sim V_{\text{CKM}}$$

Neglecting threshold effects:

$$m_{16}^2 \simeq m_{\tilde{Q}}^2 \simeq m_{\tilde{U}^c}^2 \simeq m_{\tilde{D}^c}^2 \simeq m_{\tilde{L}}^2 \simeq m_{\tilde{E}^c}^2 \simeq m_{\tilde{N}^c}^2$$

$$m_{16}^2 \simeq m_0^2 \left(\mathbf{1} - \kappa U \begin{pmatrix} k_1 & k_2 \\ & 1 \end{pmatrix} U^{\dagger} \right)$$

Threshold parameter :
$$\kappa \simeq \frac{15}{4} \frac{(f_{33}^{\rm glag})^2}{8\pi^2} \left(3 + \frac{A_0^2}{m_0^2}\right) \ln \frac{M_*}{M_{\rm GUT}}$$

$$f = U f^{\mathsf{diag}} U^{\mathsf{T}}$$

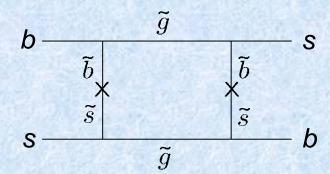
 M_* : String/Planck scale

$$k_2 \simeq \frac{\Delta m_{\rm sol}^2}{\Delta m_{\rm atm}^2}$$

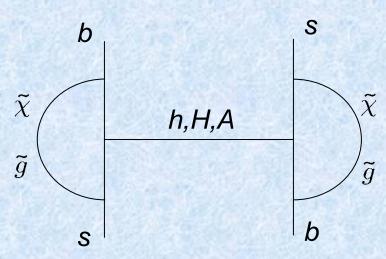
Both left- and right-squarks have sizable FCNC effects!

SUSY contributions in $B\text{-}\bar{B}$ mixings

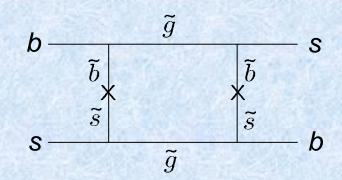
Gluino box contribution.



Double Higgs penguin contribution.



Gluino box contribution.



Mass insertion approximation:

$$\frac{M_{12}^{\rm SUSY}}{M_{12}^{\rm SIM}} \simeq a[(\delta_{LL}^d)_{32}^2 + (\delta_{RR}^d)_{32}^2] - b(\delta_{LL}^d)_{32}(\delta_{RR}^d)_{32} + \cdots$$

$$a \sim O(1), \ b \sim O(100) \ \text{for} \ m_{\rm SUSY} \sim 1 \ \text{TeV} \ \text{(Ball-Khalil-Kou)}$$

$$\delta^d_{LL,RR} = (M^2_{\tilde{d}})_{LL,RR}/\tilde{m}^2 \qquad \tilde{m} : \text{ average squark mass}$$

$$(\tilde{d}_L,\tilde{d}_R) \begin{pmatrix} (M^2_{\tilde{d}})_{LL} & (M^2_{\tilde{d}})_{LR} \\ (M^2_{\tilde{d}})_{RL} & (M^2_{\tilde{d}})_{RR} \end{pmatrix} \begin{pmatrix} \tilde{d}^\dagger_L \\ \tilde{d}^\dagger_R \end{pmatrix} \qquad (M^2_{\tilde{d}})_{LL} = m^2_{\tilde{Q}} + \cdots \\ (M^2_{\tilde{d}})_{RR} = (m^2_{\tilde{D}^c})^{\mathsf{T}} + \cdots$$

Both left- and right-squarks have FCNC effects in SO(10).

$$\frac{M_{12}^{\text{SUSY}}}{M_{12}^{\text{SM}}} \simeq a[(\delta_{LL}^d)_{32}^2 + (\delta_{RR}^d)_{32}^2] - b(\delta_{LL}^d)_{32}(\delta_{RR}^d)_{32} + \cdots$$

$$a \sim O(1)$$
, $b \sim O(100)$ for $m_{\text{SUSY}} \sim 1$ TeV

Flavor violating effects are larger in the box diagram in SO(10).

Cf. Only δ^d_{RR} is large in SU(5).

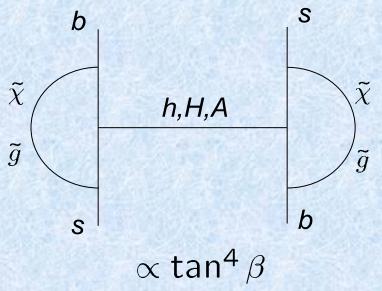
• SU(5) GUT with type I seesaw (FCNC source = Y_{ν}) Only δ^d_{RR} is large in SU(5).

• SO(10) GUT with type II seesaw (triplet term dominant) (FCNC source = $16\ 16\ \overline{126}$ coupling)

Both δ^d_{LL} and δ^d_{RR} is large in SO(10).

"SO(10) > SU(5)" for box contribution

Double penguin contribution. (Hamzaoui-Pospelov-Toharia, Buras et.al., Bobeth et.al.,...)



FCNC Higgs-Penguin operator comes from finite mass correction.

$$\mathcal{L}^{\mathsf{eff}} = Y_d Q D^c H_d + \epsilon Q D^c H_u^*$$

$$\mathcal{L}^{\mathsf{FCNC}} = \epsilon Q D^c H_u^* - (\epsilon \tan \beta) Q D^c H_d$$

(in the basis where the eff. mass is diag.)

$$(\delta_{LL})_{32}(\delta_{LL})_{32}\left(rac{\sin^2(\alpha-eta)}{m_H^2} + rac{\cos^2(\alpha-eta)}{m_h^2} - rac{1}{m_A^2}
ight) o 0 \ (m_A > M_Z, aneta \gg 1)$$

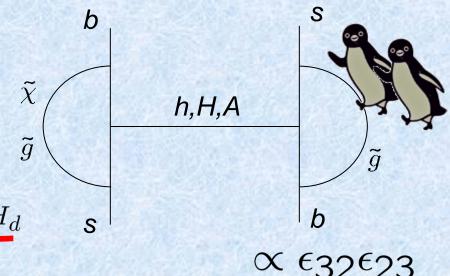
$$(\delta_{LL})_{32}(\delta_{RR})_{32}\left(\frac{\sin^2(\alpha-\beta)}{m_H^2}+\frac{\cos^2(\alpha-\beta)}{m_h^2}+\frac{1}{m_A^2}\right)$$

Dominant contribution

Double penguin contribution

$$\mathcal{L}^{\text{eff}} = Y_d Q D^c H_d + \epsilon Q D^c H_u^* \qquad \mathcal{E}^{\text{FCNC}}$$

$$\mathcal{L}^{\text{FCNC}} = \epsilon Q D^c H_u^* - (\epsilon \tan \beta) Q D^c H_d$$



"Left-handed" penguin $\epsilon_{23} s_L b_R^c H^0$

$$\epsilon_{23} \propto O(V_{ts}) ext{(chargino)} + \delta_{LL,23}^{ ilde{d}} ext{(gluino)}$$

"Right-handed" penguin $\epsilon_{32}b_Ls_R^cH^0$

$$\epsilon_{32} \propto$$

$$+\,\delta^{ ilde{d}}_{RR,23}({
m gluino})$$

"SO(10) ~ SU(5)" for double penguin contribution

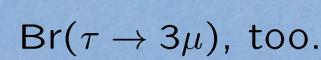
$$Br(\tau \to \mu \gamma) \propto \tan^2 \beta$$

 $A_s^{\rm NP}({\rm double\ penguin}) \propto {\rm tan}^4 \beta/m_A^2$

For large $\tan \beta$ and small m_A , the large CP phase is possible.

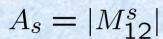
However,

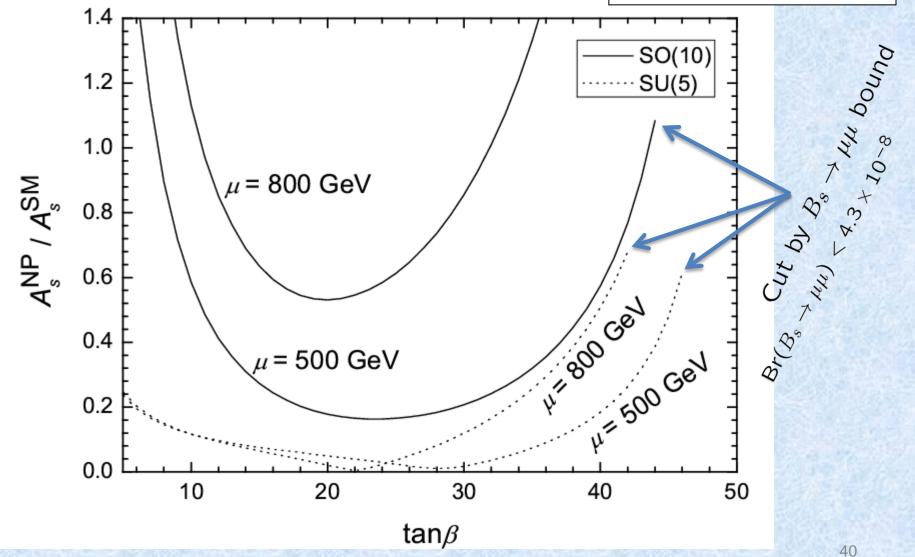
$$Br(B_s \to \mu\mu) \propto \tan^6 \beta/m_A^4$$



 μ

 $m_0 = 800 \text{ GeV}$ $m_{1/2} = 300 \text{ GeV}$





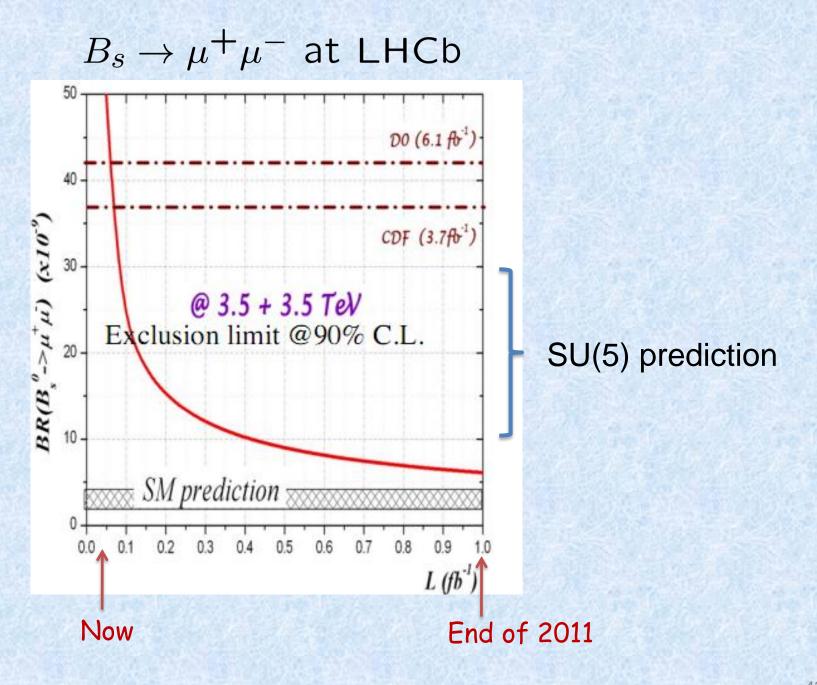
For a given large CP phase, $Br(B_s \to \mu\mu)$ needs to be large in SU(5).

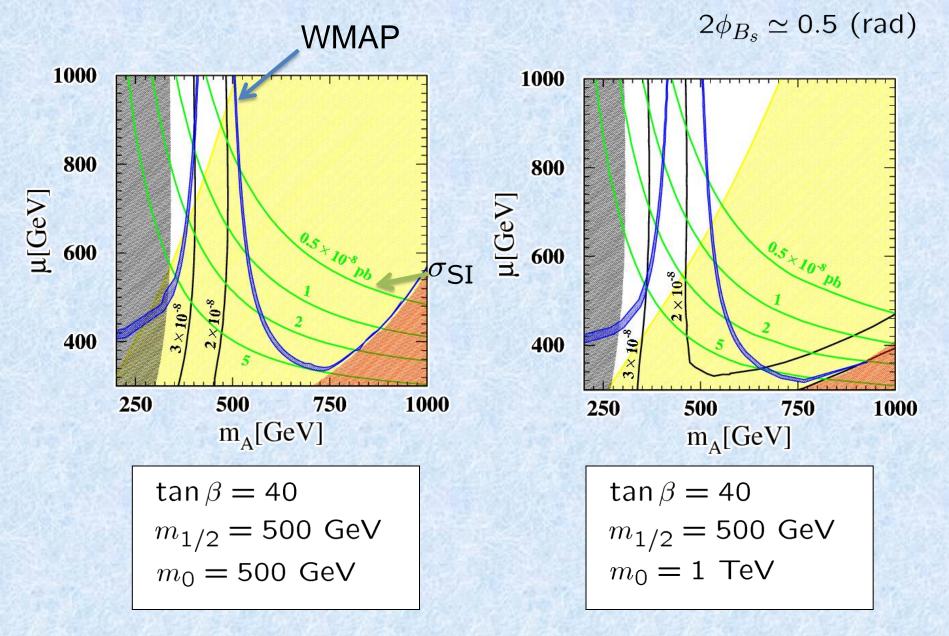
Larger m_A for a given CP phase \longrightarrow Larger κ is needed. \longrightarrow Excluded by $\tau \to \mu \gamma$ (Br $(B_s \to \mu \mu)$ is smaller)

$m_0, m_{1/2}$	Minimal value of $Br(B_s \to \mu\mu)$	
$m_0 = m_{1/2} = 500 \text{ GeV}$	1.8×10^{-8}	
$m_0 = m_{1/2} = 1 \text{ TeV}$	1.3×10^{-8}	
$m_0 = 500 \text{ GeV}, \ m_{1/2} = 1 \text{ TeV}$	2.8×10^{-8}	

In SU(5) GUT model where quark-lepton unif. is manifested, it is expected that $B_s \to \mu\mu$ is observed soon.

$$aneta=40$$
 $\mu<1$ TeV $2\phi_{B_s}\simeq 0.5$ (rad) $\mathrm{Br}(au o\mu\gamma)<4.4 imes10^{-8}$



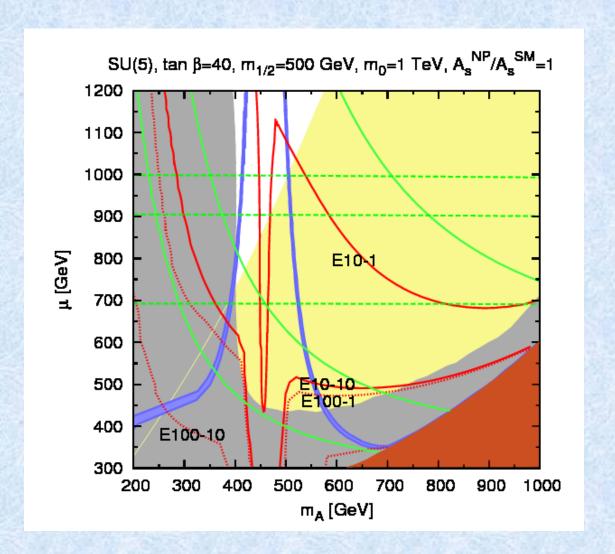


A-funnel solution for neutralino dark matter relic density is preferred.

$$m_A \sim 2 m_{{ ilde \chi}_1^0}$$

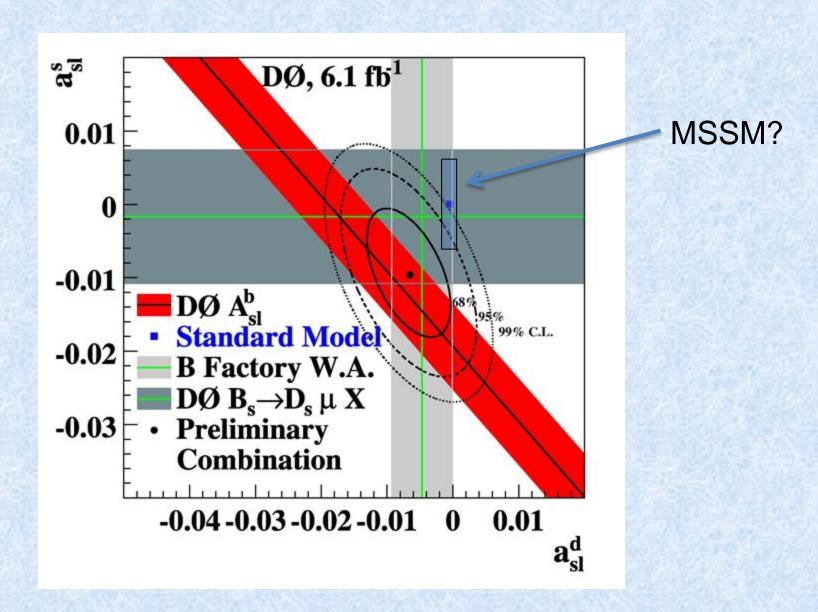
Summary

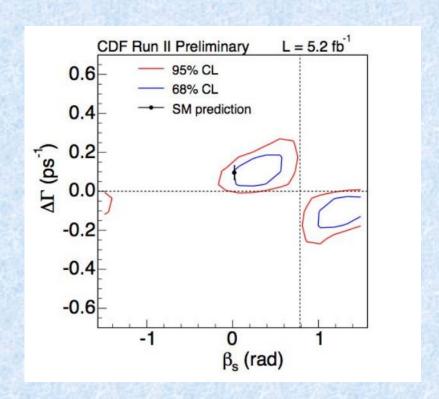
- The dimuon asymmetry is a good probe of NP.
- Dispersive part of the mixing amplitude can be easily modified in NP, but absorptive part is not easy.
- We study the CP phase in the mixing amplitude in SUSY GUT models.
- The phase is more enhanced in SO(10) rather than in SU(5).
- Especially in SU(5), $Br(B_s \to \mu\mu)$ is expected to be large in order to allow a large phase.

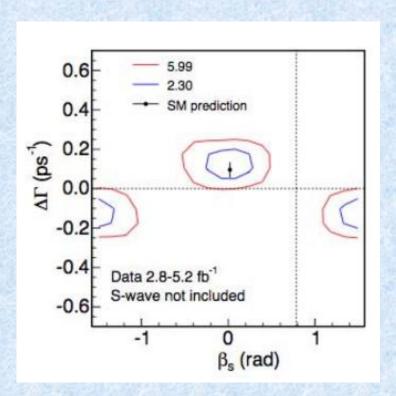


Muon flux from the sun

Ex-y : x is the assumed detector energy threshold in GeV y is the flux in $\,\mathrm{km^{-2}}\,\,\mathrm{yr^{-1}}$







Back up Slides

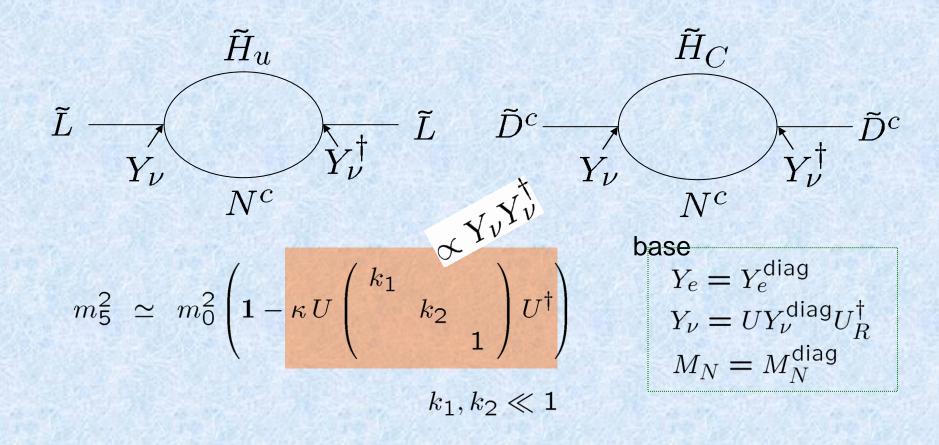
Large Phase of B_s - \bar{B}_s mixing

CP violation in $B_s \to J/\psi \phi$ decay $(b \to sc\bar{c})$. $S_{b \to sc\bar{c}} = \sin \phi_s$

SM prediction :
$$\phi_s=-2\beta_s\simeq -0.04$$
 (rad) small!
$$\beta_s\equiv \arg\left(-\frac{V_{ts}V_{tb}^*}{V_{cs}V_{cb}^*}\right)$$

Measurements:

$$-\phi_s(\text{CDF}) = [0.32, 2.82] (68\% \text{ CL})$$
 (1.35 fb⁻¹) (arXiv: 0712.2397) $-\phi_s(\text{D0}) = 0.57^{+0.30}_{-0.24}(\text{stat})^{+0.02}_{-0.07}(\text{syst})$ (2.8 fb⁻¹) (arXiv: 0802.2255)



U : unitary mixing matrix

$$\kappa \simeq \frac{(Y_{\nu 33}^{\text{diag}})^2}{8\pi^2} \left(3 + \frac{A_0^2}{m_0^2}\right) \ln \frac{M_*}{M_{\text{GUT}}}$$

If $U_R = 1$, U is the PMNS neutrino mixing matrix.

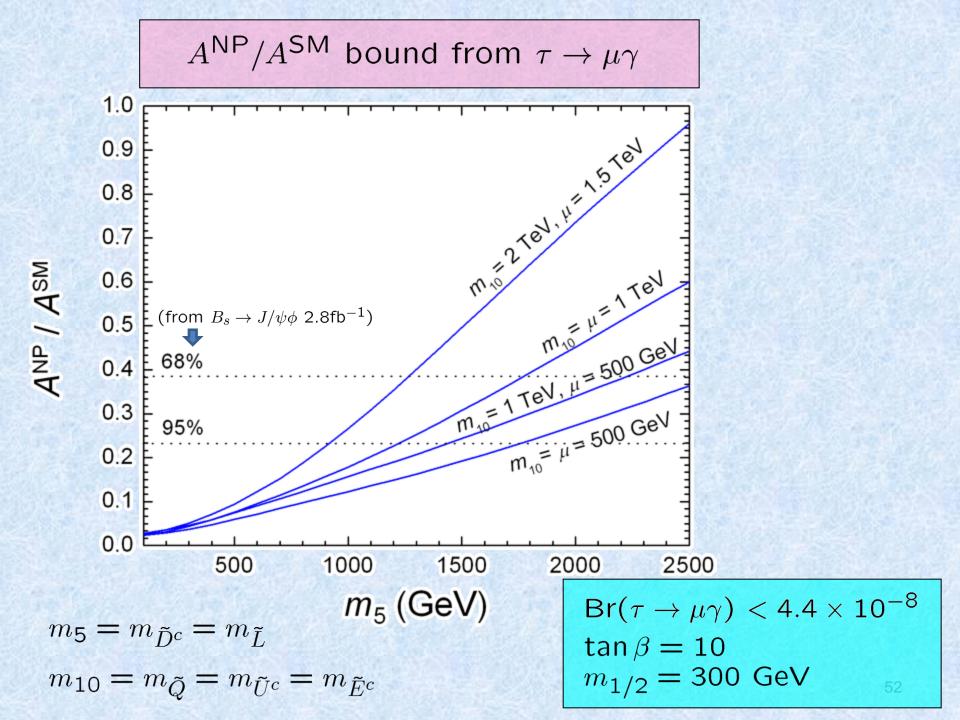
Suppression of $au o \mu \gamma$

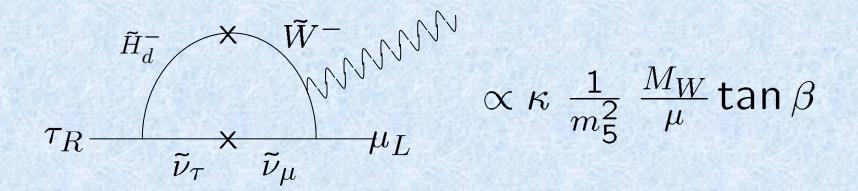
$$M_{\tilde{D}^c}^2 \sim \begin{pmatrix} (1\text{TeV})^2 + m_0^2 & & \\ & (1\text{TeV})^2 + m_0^2 & \kappa m_0^2 \\ & & \kappa m_0^2 & (1\text{TeV})^2 + m_0^2 \end{pmatrix}$$

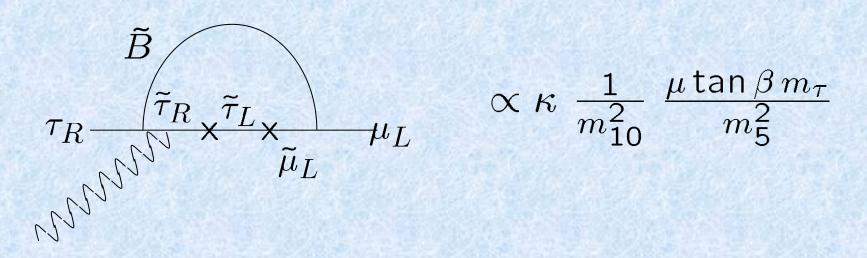
$$M_{\tilde{L}}^2 \sim \begin{pmatrix} (0.2 \text{TeV})^2 + m_0^2 \\ (0.2 \text{TeV})^2 + m_0^2 \\ \kappa m_0^2 \end{pmatrix} \kappa m_0^2$$
 $(0.2 \text{TeV})^2 + m_0^2 \end{pmatrix}$

Diagonal elements are enlarged by gaugino loops.

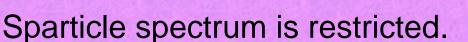
Large m_0 affects to $\tau \to \mu \gamma$ suppression more effectively rather than $A_s^{\rm NP}$ suppression.







Large m_5, m_{10}, μ are needed to suppress $\tau \to \mu \gamma$.

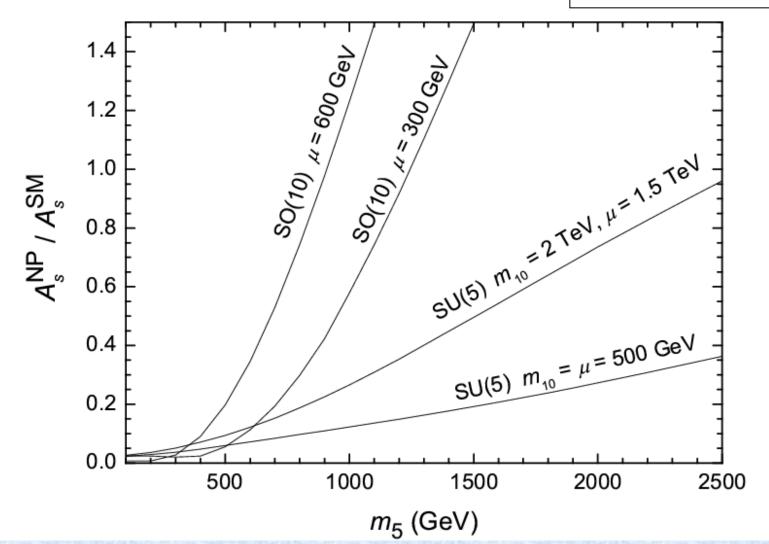


LHC

$$\mathrm{Br}(\tau \to \mu \gamma) < 4.4 \times 10^{-8}$$

$$\tan \beta = 10$$

$$m_{1/2} = 300 \; \mathrm{GeV}$$



Possible violation of the quark-lepton unification

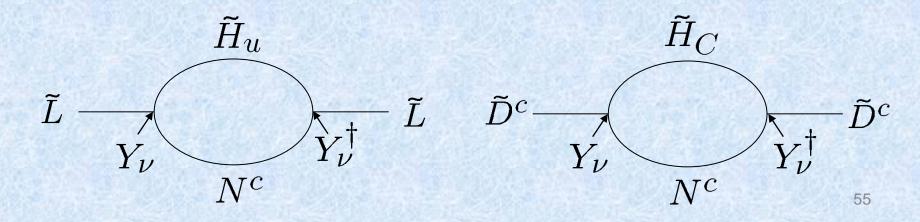
To relax the constraint, one needs $\kappa_{\text{quark}} > \kappa_{\text{lepton}}$.

In SU(5) model in which neutrino Dirac Yukawa coupling

is the origin of the flavor violation,

$$\kappa_q \propto \ln rac{M_*}{M_{H_C}}$$
, $\kappa_\ell \propto \ln rac{M_*}{M_N}$,

and thus, $\kappa_q < \kappa_\ell$.



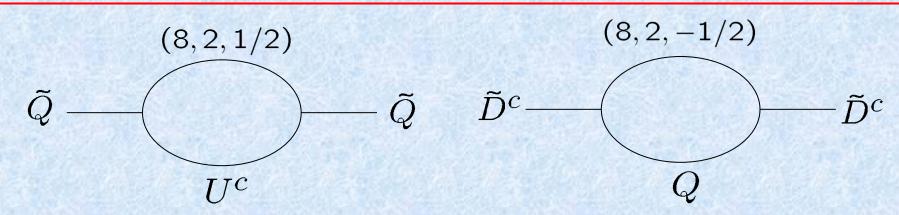
In SO(10) model, it depends on the SO(10) breaking vacua.

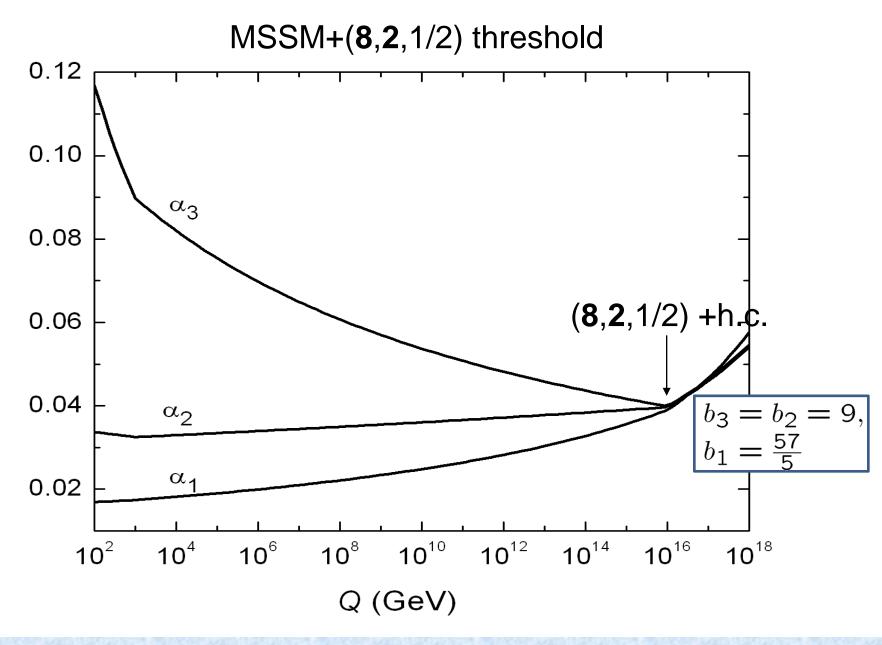
If $SU(2)_R$ remains below the SO(10) breaking scale, $SU(2)_R$ Higgsino induces κ_ℓ rather than κ_q . Wrong direction!

If (8,2,1/2) (in 126 Higgs) is light, it generates only κ_q .

Right direction!

Light (8,2,1/2) is also proper direction to suppress proton decay. (Dutta-YM-Mohapatra)



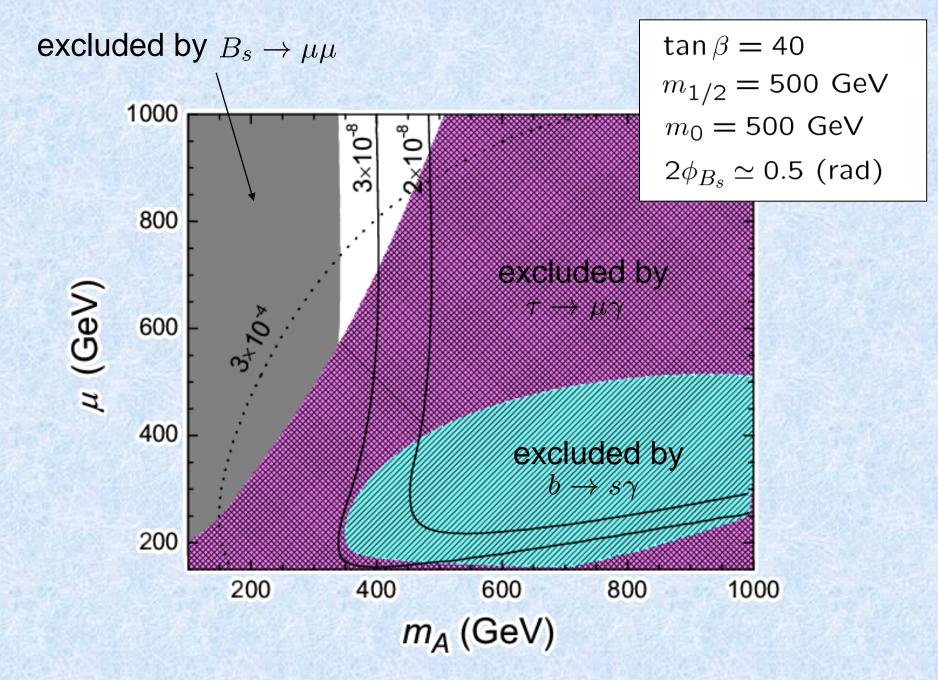


Gauge symmetry does not recover, but couplings run almost unitedly.

In the SO(10) GUT model, ϕ_{B_s} can be large due to the left-handed FCNC source.

Besides, $\tau \to \mu \gamma$ can be suppressed by a choice of vacua.

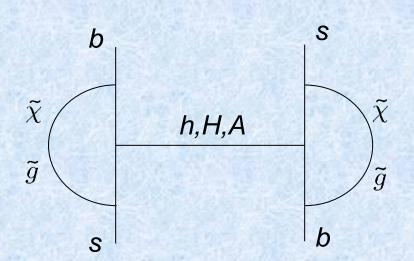
In the SU(5) GUT model, $\tau \to \mu \gamma$ bound restricts the SUSY mass spectrum when the CP phase is large.



	Wino box	Gluino box	Double Penguin
mSUGRA Minimal FV $(\kappa = 0)$	Win! (but small)		
$\kappa \neq 0$ $\tan \beta \sim 10$		Win!	
$\kappa \neq 0$ tan $\beta \sim 40$ H,A : light			Win!

$$\mathcal{L}^{\text{eff}} = Y_d Q D^c H_d + \epsilon Q D^c H_u^*$$

$$\mathcal{L}^{\text{FCNC}} = \epsilon Q D^c H_u^* - (\epsilon \tan \beta) Q D^c H_d$$



"Left-handed" penguin $\epsilon_{23} s_L b_R^c H^0$

$$\epsilon_{23} \propto O(V_{ts}) ({\rm chargino}) + \delta_{LL,23}^{\tilde{d}} ({\rm gluino})$$

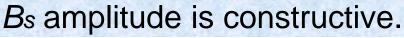
SO(10) b.c. can provide an additional contribution to the amplitude.

$$C_{7L}^{b o s\gamma} \propto O(V_{ts}) ({
m chargino}) - \delta_{LL,23}^{ ilde{d}} ({
m gluino})$$

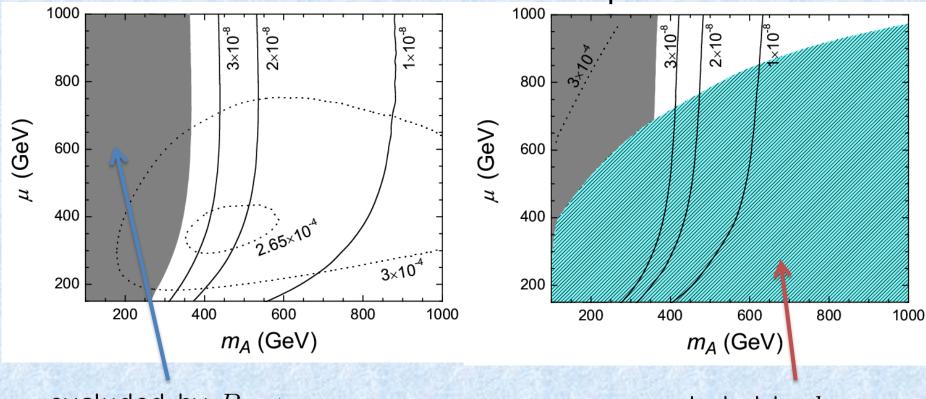
When the B_s mixing amplitude is constructive, SUSY contribution of $b \to s\gamma$ is destructive.

(Buras-Chankowski-Rosiek-Slawianowska)

 $A^{NP}/A^{SM} = 0.5$



Bs amplitude is destructive.



excluded by $B_s \to \mu\mu$

excluded by $b \to s \gamma$

Note:

The phases of $\delta_{LL,23}^{\tilde{d}}$ and $\delta_{RR,23}^{\tilde{d}}$ are independent due to a phase from the down-type quark Yukawa coupling. The phase of M_{12} (doublePenguin) is still free.