Flavor in Warped Space

National Tsing Hua University (Based on works done with John Ng, A. Spray, and J. Wu)

Nanning, Nov.18, LHEP2010

- Flavor and Warped Extra Dimension (Randall-Sundrum)
- Quark sector in RS
- Septon sector in RS

Free Parameters and problems in SM

- There are 27(+2) free parameters in SM
- Roughly speaking, one group of free parameters involves gauge interaction and how the symmetries are broken.

 $\begin{array}{rrrrr} 4 & : & \alpha_1 \,, \alpha_2, \, \alpha_3, \ G \\ +2 & : & M_W, \ m_H \end{array}$

• The second class (will be referred as general flavor problem) involes fermion masses and mixings.

 $\begin{array}{rcl} +6+6 & : & m_e, \ m_\mu, \ m_\tau, 3m_\nu s, \ m_u, \ m_c, \ m_t, \ m_d, \ m_s, \ m_b \\ +1+4+4 & : & \theta_{QCD}, \ U_{CKM}, \ U_{PMNS} \\ & (+2) & : & {\sf Majorana\ phases} \end{array}$

The ultima dream of HEP theorist is to reduce the number of free parameters as many as possible.

- Prominent problems: gauge hierarchy? Electroweak symmetry breaking?
 For example, GUT makes three couplings to one
- Prominent problems: Why 3 generations? Why $m_t \gg m_q, m_l \gg m_{\nu}$? Why $\theta_{CKM}^{12} \gg \theta_{CKM}^{23} \gg \theta_{CKM}^{13}$? For example, flavor symmetry to reduce the 21(+2) flavor parameters to only few
- ... etc

Mass and gravity

(Pictures stolen from Fritzsch's talk)

Equivalence principle Eötvös exp, $< 10^{-9}$

Einstein Eq Need unify concept of mass.

Gravity and mass $\Leftarrow \Rightarrow$ Quantum Physics

Planck Mass

$$M_{
m p}=\sqrt{rac{\hbar c}{G}}=1.2 imes 10^{19}~{
m GeV}\sim 0.02~{
m mg}$$

Our ultimate goal: All physical quantities be calculated in terms of Planck units.

RS Model is one of the promising candidates

• Randall-Sundrum (PRL83, 3370) can explain the hierarchy between EW and M_{planck}

$$EW \sim k e^{-kr_c\pi}, \ kr_c \sim 11.7$$

where k is the 5D curvature $\sim M_{planck}$ and r_c is the radius of the compactified fifth dimension.

- Due to the same warping factor, the mass and mixing hierarchy among fermions can be achieved without fine tuning in Yukawa couplings.
- And the number of free parameters (in flavor sector) is smaller than in SM

Introduction to the Randall-Sundrum Model

- RS assumes a 1+4 dim with a warp or conformal metric, AdS.
- 5D interval (S_1/Z_2) is given by

$$ds^2 = G_{AB}dx^Adx^B = e^{-2kr_c|\phi|}\eta_{\mu\nu}dx^\mu dx^
u - r_c^2d\phi^2, \ -\pi \le \phi \le \pi$$

Two branes are localizes at φ = 0(UV) and φ = π(IR)
The metric is

$$\mathcal{G}_{AB}=\left(egin{array}{cc} e^{-2\sigma}\eta_{\mu
u} & 0 \ 0 & -r_c^2 \end{array}
ight), \ \sigma\equiv kr_c|\phi|$$

Warped space

Due to the metric, matters tend to stay near the IR brane.

From Planck to EW

• A Higgs scalar on the IR brane.

$$\int d^4x d\phi \sqrt{G} \frac{\delta(\phi-\pi)}{r_c} \left[G^{\mu\nu} (D_\mu \Phi(x))^{\dagger} D_\nu \Phi(x) + \lambda \left(|\Phi(x)|^2 - v^2 \right)^2 \right]$$
$$= \int d^4x d\phi e^{-4\sigma} \delta(\phi-\pi) \left[e^{2\sigma} (D_\mu \Phi(x))^{\dagger} D_\nu \Phi(x) + \lambda \left(|\Phi(x)|^2 - v^2 \right)^2 \right]$$

• After SSB, $\Phi(x)$ acquires a VEV, $\langle \Phi \rangle = v \sim$ the Planck scale. Re-scaling the Higgs field to $H(x) = e^{-kL}\Phi(x)$, the effective 4D action becomes

$$\int d^4x \left[(D_\mu H(x))^{\dagger} D^\mu H(x) + \lambda \left(|H(x)|^2 - v_W^2 \right)^2 \right]$$

 $v_w = v e^{-k\pi r_c} = 174 GeV.$

• 5D action for fermions is

$$\int d^4 x d\phi \sqrt{G} \left[E^A_a \bar{\Psi} \gamma^a D_A \Psi - c \ k \ \mathrm{sgn}(\phi) \bar{\Psi} \Psi \right]$$

where E_a^A is the veilbien, and a dimensionless bulk mass c.

$$\Psi_{L,R}(x,\phi) = \frac{e^{\frac{3}{2}\sigma}}{\sqrt{r_c}} \sum_n \Psi_n^{L,R}(x) \hat{\phi}_n^{L,R}(\phi), \ \langle \hat{\phi}_n | \hat{\phi}_m \rangle = \delta_{m,n}$$

spectrum determined by B.C.'s (+: Neumann /-: Dirichlet).

- Desired chirality for zero mode set by orbifold parity.
- The coefficients $c_{L,R}$ control the zero modes peak at either UV or IR
- SM chiral zero modes localized near UV brane ⇒ small overlap after SSB. No need to fine tune Yukawa's. Fermion masses are naturally small. (except 3rd generation quarks)

Fermion Masses in RS

• The fermion masses are given by

$$\left\langle M_{ij}^{f} \right\rangle = \frac{\lambda_{5,ij}^{f} v_{W}}{k r_{c} \pi} f_{L}^{0}(\pi, c_{f_{i}}^{L}) f_{R}^{0}(\pi, c_{f_{j}}^{R})$$

where $v_W = 174$ GeV, and

$$f_{L,R}^{0}(\phi, c_{L,R}) \propto \exp\left[kr_{c}\phi(1/2 \mp c_{L,R})\right]$$

- The Yukawa couplings λ_{ij} are arbitrary complex numbers with $|\lambda| \sim O(1)$.
- The task is find configurations that fit all the known fermion masses and the CKM/PMNS matrices.

Bulk Wave Function

One More Look at the Bulk Wave Function Profiles

Electroweak Precision Tests

- The main problem is that the new KK modes will modify EWPT
- The S, T parameters will receive tree level corrections
- It's known that $\rho = 1$ is protected by a custodial SU(2) symmetry
- Promote that to a bulk gauge symmetry
- Tree level KK gauge effects are suppressed
- The gauge symmetry is now $SU(2)_L \times SU(2)_R \times U(1)_X$
- Take X = B L

Custodial RS model

• Break $SU(2)_R \rightarrow U(1)_R$ by orbifold B.C.

• $U(1)_R imes U(1)_X o U(1)_Y$ by VEV on UV brane. We have a Z' and B_μ

$$Z'_{\mu} = rac{g_5 ilde{W}^3_{\mu} - g'_5 ilde{B}_{\mu}}{\sqrt{g_5^2 + {g'_5}^2}}$$

and

$$B_{\mu} = rac{g_5' ilde{W}_{\mu}^3 + g_5 ilde{B}_{\mu}}{\sqrt{g_5^2 + {g_5'}^2}}$$

 B_μ is the SM hypercharge gauge boson and broken with SU(2)_L on the IR brane by Higgs (a bi-doublet)

Quark Representation

- Zero modes have parity (++)
- Usual assignment doesn't work

$$\begin{array}{ccc} SU(2)_L & SU(2)_R \\ \begin{pmatrix} t_L \\ b_L \end{pmatrix} & \begin{pmatrix} t_R \\ b_R \end{pmatrix} \end{array}$$

because t_R is a zero mode and $SU(2)_R$ is broken on UV

• d_R and t_R must have their own (-+) partners

$$\begin{array}{ccc} SU(2)_L & SU(2)_R & SU(2)_R \\ \begin{pmatrix} t_L \\ b_L \end{pmatrix} & \begin{pmatrix} \mathbf{T}_{\mathbf{R}} \\ b_R \end{pmatrix} & \begin{pmatrix} t_R \\ \mathbf{B}_{\mathbf{R}} \end{pmatrix} \end{array}$$

General Configurations

• We have found several realistic configurations. For example,

$$\nu_Q = \{0.634, 0.556, 0.256\}$$

$$\nu_U = \{-0.664, -0.536, 0.185\}$$

$$\nu_D = \{-0.641, -0.572, -0.616\}$$

• The u and d quark mass matrices (at TeV scale)

$$\langle |M_u| \rangle = \begin{pmatrix} 0.000897 & 0.049 & 0.767 \\ 0.010 & 0.554 & 8.69 \\ 0.166 & 9.06 & 142.19 \end{pmatrix}, \\ \langle |M_d| \rangle = \begin{pmatrix} 0.0019 & 0.017 & 0.0044 \\ 0.022 & 0.196 & 0.050 \\ 0.352 & 3.209 & 0.813 \end{pmatrix},$$

(in GeV), where we have used $\textit{ke}^{-\textit{kr}_{c}\pi}=1.5\textit{TeV}$

RS Quark Masses

• Statistic average: $\lambda_5 = \rho e^{i\theta}$,

$$ho \in \left[1/\sqrt{2},\sqrt{2}
ight], heta \in \left[0,2\pi
ight]$$

• The CKM matrix elements for the above

$$\begin{split} |V_{us}^{L}| &= 0.16(14) \,, \; |V_{ub}^{L}| = 0.009(11) \,, \; |V_{cb}^{L}| = 0.079(74) \\ |V_{us}^{R}| &= 0.42(24) \,, \; |V_{ub}^{R}| = 0.12(10) \,, \; |V_{cb}^{R}| = 0.89(13) \end{split}$$

- Note the RH rotations are larger than the LH ones
- Appears to be true from the numerical searches we found
 How to test it?

FCNC in the minimal Constrained RS model

- \bullet Besides the direct production of the KK Z ($\geq 2.5~\text{TeV}$) is tree level FCNC
- FCNC $Z f_{KK}$ and $Z Z'_{KK}$ mixing

 $\bullet\,$ Going to the mass basis the unitarity is broken $\to\,$ FCNC

The BR is:

$$Br(t \rightarrow Zc(u)) = 1.8677 \times \left(|Q_Z(t_L)\hat{\kappa}_{tc(u)}^L|^2 + |Q_Z(t_R)\hat{\kappa}_{tc(u)}^R|^2 \right)$$

- LH and RH decays are different. $\kappa^R > \kappa^L$ in the configs we found.
- But $Br(t_R \rightarrow Z + c(u)_R) < Br(t_L \rightarrow Z + c(u)_L)$ by factor $\sim 2 10$ due to the destructive interference.
- $\bullet\,$ The BR is $\sim 10^{-5}$ c.f. SM $\sim 10^{-13}$
- Compare the decays in $t\bar{t}$ vs single tW channels.

$\triangle F = 2$ FCNC

• Server constraint come from $\triangle F = 2$ FCNC mediated by tree-level exchange of KK gluons.

• The fermions are in the weak eigenbasis. Go to the mass basis,

$$G^{(n)}_{\mu}\left[\sum_{a,b} (\hat{g}^n_f)^L_{ab} \, \bar{f}'_{aL} \gamma^{\mu} f'_{bL} + (L \leftrightarrow R)\right] \,, \qquad f = u, \, d \,,$$

• Summing all KK Gluon contribution

$$\mathfrak{S}_{ab,cd}^{\omega,\xi} = \sum_{n=1}^{\infty} \frac{(\hat{g}_f^n)_{ab}^{\omega}(\hat{g}_f^n)_{cd}^{\xi}}{m_n^2}, \qquad \omega, \, \xi = L, \, R$$

• The effective $\Delta F = 2$ Hamiltonian beyond SM

$$\mathcal{H}_{eff}^{NP} = \sum_{i=1}^5 C_i(\Lambda) Q_i^{ab} + \sum_{i=1}^3 \tilde{C}_i(\Lambda) \tilde{Q}_i^{ab} \,,$$

 Λ :the scale of new physics, and

$$\begin{array}{lll} Q_1^{ab} & = & \bar{\psi}^{\alpha}_{aL} \gamma_{\mu} \psi^{\alpha}_{bL} \bar{\psi}^{\beta}_{aL} \gamma^{\mu} \psi^{\beta}_{bL} \,, \\ Q_2^{ab} & = & \bar{\psi}^{\alpha}_{aR} \psi^{\alpha}_{bL} \bar{\psi}^{\beta}_{aR} \psi^{\alpha}_{bL} \,, \\ Q_3^{ab} & = & \bar{\psi}^{\alpha}_{aR} \psi^{\beta}_{bL} \bar{\psi}^{\beta}_{aR} \psi^{\alpha}_{bL} \,, \\ Q_4^{ab} & = & \bar{\psi}^{\alpha}_{aR} \psi^{\alpha}_{bL} \bar{\psi}^{\beta}_{aL} \psi^{\beta}_{bR} \,, \\ Q_5^{ab} & = & \bar{\psi}^{\alpha}_{aR} \psi^{\beta}_{bL} \bar{\psi}^{\beta}_{aL} \psi^{\alpha}_{bR} \,, \end{array}$$

- α , β : colour indices, a, b: generation indices. The operator $\tilde{Q}^{ab}_{1,2,3}$ are obtained from $Q^{ab}_{1,2,3}$ by the $L \leftrightarrow R$.
- From KK Gluons,

$$C_1(\Lambda) = rac{1}{6} \mathfrak{S}^{LL}_{ab,ab}, \qquad ilde{C}_1(\Lambda) = rac{1}{6} \mathfrak{S}^{RR}_{ab,ab}, \qquad C_4(\Lambda) = -\mathfrak{S}^{LR}_{ab,ab},$$

confront with the UTFit

The 95% allowed range of the Wilson coefficients from UTfit contributing in the ΔF = 2 tree-level gluon exchange processes, and their typical values at Λ = 4 TeV in each configuration. All values are given in units of GeV⁻².

Parameter	95% allowed range	Config. I	Config. II	Config. III
Re C_K^1	$[-9.6, 9.6] \cdot 10^{-13}$	$4.3 \cdot 10^{-17}$	$1.8 \cdot 10^{-15}$	$-4.2 \cdot 10^{-15}$
Re C_K^4	$[-3.6, 3.6] \cdot 10^{-15}$	$-1.4 \cdot 10^{-16}$	$-2.8 \cdot 10^{-16}$	$-1.8 \cdot 10^{-15}$
Re C_K^8	$[-1.0, 1.0] \cdot 10^{-14}$	$4.6 \cdot 10^{-17}$	$9.4 \cdot 10^{-17}$	$6.0 \cdot 10^{-16}$
$\operatorname{Im} C^1_K$	$[-4.4, 2.8] \cdot 10^{-15}$	$2.6 \cdot 10^{-18}$	$1.8 \cdot 10^{-15}$	$-1.0 \cdot 10^{-15}$
$\lim C_K^4$	$[-1.8, 0.9] \cdot 10^{-17}$	$1.5 \cdot 10^{-19}$	$8.8 \cdot 10^{-18}$	$-1.8 \cdot 10^{-18}$
$\operatorname{Im} C_K^{\mathfrak{S}}$	$[-5.2, 2.8] \cdot 10^{-17}$	$-4.9 \cdot 10^{-20}$	$-2.9 \cdot 10^{-18}$	$6.0 \cdot 10^{-19}$
$ C_D^1 $	$< 7.2 \cdot 10^{-13}$	$1.3 \cdot 10^{-13}$	$3.1 \cdot 10^{-13}$	$1.6 \cdot 10^{-14}$
$ C_D^4 $	$< 4.8 \cdot 10^{-14}$	$1.7 \cdot 10^{-15}$	$8.8 \cdot 10^{-15}$	$4.0 \cdot 10^{-14}$
$ C_D^{\delta} $	$< 4.8 \cdot 10^{-13}$	$5.7 \cdot 10^{-16}$	$2.9 \cdot 10^{-15}$	$1.3 \cdot 10^{-14}$
$ C_{B_d}^1 $	$< 2.3 \cdot 10^{-11}$	$7.5 \cdot 10^{-13}$	$7.7 \cdot 10^{-14}$	$4.8 \cdot 10^{-13}$
$ C_{B_A}^4 $	$< 2.1 \cdot 10^{-13}$	$1.9 \cdot 10^{-13}$	$4.8 \cdot 10^{-14}$	$1.7 \cdot 10^{-13}$
$ C_{B_A}^5 $	$< 6.0 \cdot 10^{-13}$	$6.2 \cdot 10^{-14}$	$1.6 \cdot 10^{-14}$	$5.6 \cdot 10^{-14}$
$ C_{B_{2}}^{1} $	$< 1.1 \cdot 10^{-9}$	$9.0 \cdot 10^{-11}$	$4.1 \cdot 10^{-11}$	$4.0 \cdot 10^{-11}$
$ C_{B_*}^4 $	$< 1.6 \cdot 10^{-11}$	$9.4 \cdot 10^{-12}$	$7.6 \cdot 10^{-13}$	$5.8 \cdot 10^{-12}$
$ C_{B_{*}}^{5} $	$< 4.5 \cdot 10^{-11}$	$3.1 \cdot 10^{-12}$	$2.5 \cdot 10^{-13}$	$1.9 \cdot 10^{-12}$

1st KK Gluon at LHC

• For the three configurations and for $m_1 = 4.0$ TeV, the widths into the $\bar{t}t$ pairs are: {769.3, 635.4, 747.4} GeV.

٩	The decay branching ratios of $G^{(1)}$			
	Branching ratios	Config. I	Config. II	Config. III
	Top quarks	0.83	0.83	0.84
	Bottom quarks	0.16	0.16	0.15
	All Light quarks	0.01	0.01	0.01

Top quark spin,

$$\frac{d\Gamma_s}{d\cos\theta} = \frac{m_1}{192\pi} \sqrt{1 - 4x_t^2} \left\{ \left(|\hat{g}_L|^2 + |\hat{g}_R|^2 \right) (1 - x_t^2) + 6\operatorname{Re}\left(\hat{g}_L \hat{g}_R^*\right) x_t^2 + 2\left(|\hat{g}_R|^2 - |\hat{g}_L|^2 \right) x_t \sqrt{1 - 4x_t^2} \,\mathbf{s} \cdot \hat{\mathbf{p}} \right\}$$

with $x_t \equiv m_t/m_1$ and **s** the measured top spin three-vector, and **p** the three-momentum of the same top quark in the rest frame of $G^{(1)}$.

- The RS model can accommodate good quark mass matrices without fine tuning Yukawa
- $U_R > U_L$
- Tree level FCNC best probed in $t \rightarrow Z + jets$. The BR is $\sim 10^{-5}$ makes it very interesting at the LHC
- Predicts that LH decays are dominant.
- $\triangle F = 2$ is OK if with NP $\Lambda = 4$ TeV. And the discovery of 1st KK gluon at LHC is possible
- $G^{(1)}$ decay branching ratios: ~ 0.84 for top, ~ 0.15 for $bar{b}$.
- Top spin is useful to probe into the flavor structure of the RS scenario.

- Neutrinos are massive. How about adding RH neutrinos to SM to write down $y_{\nu} \bar{L} \nu_R H$?
- Hierarchy among the Yukawa $y_t \sim 1 \Leftrightarrow y_
 u \lesssim 10^{-12}$
- Dim-4 operator is no good in 4D SM. But small y^{\nu}_{eff} can be naturally made in models with extra spatial dimension(s).
- Bulk RH neutrinos in ADD model can make y_{eff}^{ν} small due to the same volume dilution that brings $M_G \Rightarrow$ TeV.

$$y_
u \sim \int dy \, y_5 \, \delta(y)_{SM} \, \phi(y) \,, \; y_5 \sim \mathcal{O}(1)$$

Dirac Neutrino Masses in RS

• The neutrino masses are given by

$$\left\langle M_{ij}^{\nu} \right\rangle = \frac{\lambda_{5,ij}^{\nu} v_W}{k r_c \pi} f_L^0(\pi, c_{\nu_i}^L) f_R^0(\pi, c_{\nu_j}^R)$$

where $v_W = 174$ GeV, and

$$f_{L,R}^{0}(\phi, c_{L,R}) \propto \exp\left[kr_{c}\phi(1/2 \mp c_{L,R})
ight]$$

- The Yukawa couplings λ_{ij} are arbitrary complex numbers with $|\lambda| \sim O(1)$.
- The task is find configurations that fit the PMNS matrix

Numerical solutions

Also, lepton flavor violation bounds $Br(\mu \rightarrow 3e) < 10^{-12}, Br(\tau \rightarrow l_1 l_2 \bar{l_3}) < 10^{-7}$

Config.	c_L	c_E	c_{ν_R}
1	$\{0.5876,0.5476,0.5001\}$	$\{-0.7245, -0.5882, -0.5216\}$	$\{-1.247, -1.223, -1.278\}$
2	$\{0.5880, 0.5456, 0.5014\}$	$\{-0.7211,-0.5917,-0.5213\}$	$\{-1.333, -1.246, -1.223\}$
3	$\{0.5865,0.5454,0.5006\}$	$\{-0.7242,-0.5899,-0.5217\}$	$\{-1.223, -1.355, -1.245\}$
4	$\{0.5877, 0.5377, 0.5006\}$	$\{-0.7249,-0.5947,-0.5203\}$	$\{-1.321, -1.250, -1.224\}$
5	$\{0.5830, 0.5328, 0.5018\}$	$\{-0.7276,-0.6005,-0.5229\}$	$\{-1.254, -1.224, -1.384\}$

Config.	Charged lepton masses (MeV)	Neutrino masses (meV)	δ_{CP}	$\{\theta_{12},\theta_{23},\theta_{13}\}~(^\circ)$
1	$\{0.4959, 104.7, 1780\}$	$\{1.4, 8.9, 50\}$	-0.47	$\{39, 36, 2.7\}$
2	$\{0.4959, 104.7, 1779\}$	$\{0.22, 8.5, 47\}$	2.5	$\{32, 42, 6.6\}$
3	$\{0.4959, 104.7, 1779\}$	$\{0.26, 9.0, 47\}$	1.3	$\{35, 38, 1.9\}$
4	$\{0.4959, 104.7, 1780\}$	$\{0.13, 8.7, 47\}$	2.4	$\{35, 53, 9.7\}$
5	$\{0.4959, 104.7, 1780\}$	$\{0.096, 9.1, 53\}$	1.5	$\{37, 49, 12\}$

Only normal hierarchy is viable in our search.

• Bulk leptons are in the representation

$$L_{i} = \begin{pmatrix} \nu_{iL}[+,+] \\ e_{iL}[+,+] \end{pmatrix}, E_{i} = \begin{pmatrix} \tilde{\nu}_{iR}[-,+] \\ e_{iR}[+,+] \end{pmatrix}, \nu_{iR}[+,+]$$

Only [+,+] fields have zero modes.

• Gauged discrete Z₃ symmetry forbids proton decay and lepton number violation.

$$\overline{d^{c}} u \overline{Q^{c}} L, \ \overline{Q^{c}} Q \overline{u^{c}} e, \ \overline{Q^{c}} Q \overline{Q^{c}} L, \ \overline{d^{c}} u \overline{u^{c}} e, \ \overline{u^{c}} u \overline{d^{c}} e, \ u d d n,$$
$$M_{n} \overline{\nu_{R}^{C}} \nu_{R}, \ \frac{1}{\Lambda_{\nu}} (LH)^{2}, \cdots$$

• The bulk EW symmetry is now extended to

$$SU(2)_L \times SU(2)_R \times U(1)_{B-L} \times U(1)_x$$

• and the $U(1)_x$ is SSB to Z_3 by a UV Higgs.

- $\bullet\,$ In general, KK excitations of gauge boson and fermions $\sim\,$ few TeVs.
- The couplings to SM fields are suppressed.
- Very hard to test at LHC.
- However, [-+] KK fermion ($\tilde{\nu}_R$) can be relatively light.

$$\frac{J_{c_E+1/2}(m_n/k)}{Y_{c_E+1/2}(m_n/k)} = \frac{J_{c_E-1/2}(m_n e^{kr_c \pi}/k)}{Y_{c_E-1/2}(m_n e^{kr_c \pi}/k)}$$

Its mass is determined by the bulk mass parameter.

Light KK [-+] Neutrinos

For the five representative configurations, we have an e-like neutrino $\tilde{\nu}_1 \sim (175 - 222)$ MeV, a μ -like neutrino $\tilde{\nu}_2 \sim (16 - 24)$ GeV, and a τ -like neutrino $\tilde{\nu}_3 \sim (168 - 180)$ GeV.

Bottom up: 3, 5, 10 TeV 1st [++]KK gauge boson.

Effective coupling

• Light KK neutrinos couple to SM ${\it W}$

$$W\tilde{\nu}_{iR}e_{iR} : r_i g_L/\sqrt{2} \\ \{r_1, r_2, r_3\} \sim \{2.0 \times 10^{-3}, 0.15, 1.0\} \times 10^{-3} \times \left(\frac{3 \text{ TeV}}{M_{-+}}\right)^2$$

• Light KK neutrinos couple to SM Z ($Z \overline{\tilde{\nu}_R} \nu_R$ is suppressed)

$$Z\bar{\tilde{\nu}}_{iR}\bar{\nu}_{iR} : \frac{g_L}{\cos\theta_W}\gamma^{\mu} \Big[z_{Li}\hat{L} + z_{Ri}\hat{R} \Big]$$

$$z_1, z_2, z_3 \Big\}_{L/R} \sim \{0.97, 0.93, 0.91\} \times 10^{-2} \times \left(\frac{3 \,\text{TeV}}{M_{-+}}\right)^2$$

• $\tilde{\nu}_3$ decays predominantly into τW .

$$\Gamma_{\tilde{\nu}_3} \sim 1.5 \times 10^{-6} \; \text{GeV}$$

• For $\tilde{\nu}_1$, the dominant decay channel is $\tilde{\nu}_1 \rightarrow e e^+ \nu_e$:

$$\tau_{\tilde{\nu}_1} \sim 2.3 \times 10^4 \times \left(\frac{M_{KK}}{3\,\text{TeV}}\right)^4 \times \left(\frac{200\,\text{MeV}}{M_{\tilde{\nu}_1}}\right)^5 \text{sec}$$

• $\tilde{\nu}_2 \rightarrow \mu \bar{l} \nu_I$, $\mu \bar{d} u$, $\mu \bar{s} c$. $\tau_{\tilde{\nu}_2} \sim 1.2 \times 10^{-15}$ sec. for $M_{\tilde{\nu}_2} = 20$ GeV and $M_{KK} = 3$ TeV,

- Our r_1 is well within $|r_1|^2 < 10^{-6}$ set by no extra peaks in the e^+ spectrum of $K^+ \rightarrow e^+ \tilde{\nu}_1$ decay for a (160-220) MeV ν .
- By kinematics, $\tilde{\nu}_1$ does not modify G_F , best determined by the muon decay, at tree level.
- At the Z pole. LEP measured

$$N_{
u} = rac{\Gamma_{inv}}{\Gamma_{
u}^{SM}} = 2.9840 \pm 0.0082 \,.$$

• $\tilde{\nu}_2$ decays into charged final states immediately. Only $\tilde{\nu}_1$ can escape the detector.

$$z_{L1}^2 + z_{R1}^2 \le 0.096 \; (95\% \, \text{CL})$$

much larger than our estimates above.

Production of $\tilde{\nu}$ at LHC

Convolute the parton level $\hat{\sigma}$ with PDF(MSTW2008) to get the production cross-section at LHC

$$\sigma(pp \rightarrow \tilde{\nu}_i e_i^+) = \int dx_1 dx_2 \, 2f_u(x_1) f_d(x_2) \hat{\sigma}(x_1 x_2 s) \theta(1 - x_{N_i})$$

The total $\tilde{\nu}_R$ production cross section ~ 0.3 fb and ~ 0.001 fb for $\tilde{\nu}_2$ and $\tilde{\nu}_3$ respectively at $\sqrt{s} = 14$ TeV (both $\tilde{\nu}I^{\pm}$ are included).

We-Fu Chang Flavor in Warped Space

- *˜*₁ is much lighter than a GeV. Too large background for *˜*₁ at LHC.
- $\tilde{\nu}_2$ can be detected via $u\bar{d} \rightarrow \tilde{\nu}_2 \mu^+ \rightarrow \mu^+ \mu^- e(\tau)\bar{\nu}$.
- Apparent lepton flavor violation plus missing energy, with the $\mu^+\mu^-$ pair not in resonance.
- These are characteristic heavy neutrino signatures.
- Similarly, $\tilde{\nu_3}$ can be detected via $u\bar{d} \rightarrow \tau^+ \tilde{\nu}_3 \rightarrow \tau^+ \tau^- W$.
- Where a W jet plus τ jets are expected and the τ jets are not in resonance.

- RS model can accommodate good fermion mass matrices without fine tuning Yukawa.
- Small Dirac neutrino masses are natural in RS model.
- A gauged discrete symmetry to forbid the gravity induced Majorana neutrino masses and proton decays.
- This model predicts normal hierarchy and a nonzero $\theta_{13} (1^o 13^o)$.
- Predicts three light KK neutrinos at 170 MeV, 20 GeV, and 180 GeV.
- 20 GeV $\tilde{\nu}_2$ may be probed at LHC.
- RS provides a framework to explain two hierarchies in the same time.

- RS provides a framework to explain two hierarchies in the same time.
- And it can be tested.

Extra -1

As of today, there are roughly 6,882,000,000 people in the world....

..... and every single one is UNIQUE!

And we have no idea why there are aliens among us??

Although any two persons have 99.9% of their DNA in common.

However, it's easy to tell the differences between two species.

We share 98.5% of DNA sequences with chimps.

Extra -4: $B_q^0 - \overline{B}_q^0$ Mixing

- One very sensitive probe to NP in the meson sector comes from the $B_q^0 - \bar{B}_q^0$ mixing (q = d, s)
- The contribution of NP to $\Delta B = 2$ transitions can be parametrized in a model-independent way as the ratio of the full (SM + NP) amplitude to the SM one

$$rac{\langle B^0_q | \mathcal{H}^{full}_{eff} | ar{B}^0_q
angle}{\langle B^0_q | \mathcal{H}^{SM}_{eff} | ar{B}^0_q
angle} \equiv 1 + rac{\langle B^0_q | \mathcal{H}^{NP}_{eff} | ar{B}^0_q
angle}{\langle B^0_q | \mathcal{H}^{SM}_{eff} | ar{B}^0_q
angle} \equiv C_q \, e^{2i\phi_q} \,, \qquad q=d, \, s \,,$$

• For the configurations of solutions we found, KK gluons are not manifest in the $B_q^0 - \overline{B}_q^0$ mixing, and the SM effects are expected to be dominant.

Parameter	Config. I	Config. II	Config. III
C _d	1.13	1.02	1.08
ϕ_d [°]	-2.48	-0.24	-3.02
Cs	1.68	1.36	1.29
ϕ_{s} [°]	0.61	0.12	0.04