Flavor Physics and CP Violation at LHCb

Hai-Yang Cheng (鄭海揚) Academia Sinica, Taipei

1st Int. Workshop on LHC Era Physics Nanning, Nov 15-19, 2010

LHCb is designed to search for indirect evidence of new physics beyond the standard model in the b and c sectors

Key measurements of LHCb

arXiv:0912.4179

- Tree-level determination of γ (NP free)
- Charmless $B \rightarrow hh$:
 - $B_s \rightarrow hh$; $\Lambda_b \rightarrow p\pi^-, pK^-$; $B^0 \rightarrow pp$
 - $B_s \rightarrow J/\psi\phi$
- $\blacksquare \quad \mathsf{B}_{\mathsf{s}} \to \mu^+ \ \mu^-$
- $\blacksquare \quad \mathsf{B}_{\mathsf{s}} \to \phi \gamma$
 - **B**⁰ \rightarrow K^{*0} $\mu^+\mu^-$, forward-backward asymmetry
 - CPV in charm

Flavor physics in high luminosity (intensity) frontier is an indirect probe for NP via loop processes:

- charm quark mass from K⁰-K⁰ mixing (GIM '70)
- top quark mass from B⁰-<u>B⁰</u> mixing (ARGUS '87)
- Higgs mass from precision measurement of electroweak observables

- 1. Null results in SM: ideal place to look for new physics in BSM
- $B_s \rightarrow \mu^+ \mu^-$ ■ β_s ■ CP violation in $B^- \rightarrow \pi^- \pi^0$ ■ Lepton number violation (τ decay) ■ CP violation in charm meson; D⁰-<u>D</u>⁰ mixing ■ $\Delta\Gamma_d$
- 2. Take the cue form the current anomalies:
- **sin2**β
- **B-CP** puzzles, especially $\Delta A_{K\pi}$
- like-sign dimuon asymmetry
- **I** forward-backward asymmetry in $B^0 \rightarrow K^{*0}\mu^+ \mu^-$
- polarization puzzle

- $\blacksquare B_{s} \rightarrow \mu^{+}\mu^{-}$
- **Forward-backward asymmetry in B \rightarrow K^* I^+ I^-**
- Hadronic B decays
- $\square D^0 \underline{D}^0 \text{ mixing}$

$B_s \rightarrow \mu^+ \mu^-$

Br(B_s $\rightarrow \mu^{+}\mu^{-}$) = (3.6±0.3) x 10⁻⁹ Buras ('09) NP:

CDF: <4.3x10⁻⁸ public note 9892

(i) MSSM, Γ∝ tanβ⁶
(ii) 𝑘⁴-parity SUSY: tree-level diagram via sneutrino even for low tanβ

<5.1x10⁻⁸ arXiv: 1006.3469

Choudhury, Gaur ('99)

improved by LHC: <7x10⁻⁹

D0:

Beyond SM scenarios

- TeV supersymmetry
- Flat extra dimension
 - -- large extra dimensions
 - -- universal extra dimensions
- Warped extra dimension
 - -- minimal warped model
 - -- Higgless model
 - -- holographic composite model
- NGB Higgs
 - -- little Higgs
 - -- twin, folded Higgs
- New strong dynamics
 - -- technicolor
 - -- top seesaw
 - -- quirk (iquark)
- Hidden valleysunparticle,...

- Exotic particles -- axigluon,...
- **...**

Forward-backward asymmetry in $B \rightarrow K^* I^+ I^-$

$$\begin{split} A_{FB}(q^2) &= -c^{eff}_{10} \,\xi(q^2) \,[\, \text{Rec}_9{}^{eff}\text{F}_1 + \,c_7{}^{eff}\,\text{F}_2/q^2 \,] \\ SM: \, c_7{}^{eff} &\sim -0.304, \quad c_{10}{}^{eff} &\sim -4.103, \\ \, c_9{}^{eff} &\sim 4.211 + Y(q^2) \end{split}$$

zero of A_{FB} occurs at $q^2=4.36$ GeV²

The present situation will be clarified by LHCb as 1400 events are expected.

$B_s \rightarrow PP, VP, VV$ decays

- QCDF: J.F. Sun, G.H. Zhu, D.S. Du; X.Q. Li, G.R. Lu, Y.D. Yang; F. Su, Y.L. Wu, Y.B. Yang, C. Zhung; HYC, K.C. Yang
- **pQCD:** C.H. Chen; Ali, Kramer, C.D. Lu, Y.L. Shen, W. Wang, Y.M. Wang, J. Liu, R. Zhou; J.W. Li, F.Y. You, D.Q. Guo; ...
- **SCET:** Williamson, Zupan; W. Wang, D.S. Yang, C.D. Lu
 - U-spin symmetry for d \leftrightarrow s quarks
 - Mixing-induced CP asymmetry is very small in SM
 - In B_u/B_d sector, $B \rightarrow K\eta$ ' has the largest rate
 - In B_s sector, $Br(B_s \rightarrow \eta' \eta') \sim 50 \times 10^{-6}$ QCDF, SCET

 $Br(B_s \rightarrow \eta \eta') \sim 35 \times 10^{-6} pQCD$

 Λ_b → pπ⁻, pK⁻ (Tevatron, Br ~ 4×10⁻⁶) arXiv:0906.1479, C.D. Lu, Y.M. Wang, H. Zou, Ali, Kramer

2-body baryonic B decays

charmless:	Mode	BaBar	Belle	CLEO
Very rare !	$\overline{B}^0 o p \bar{p}$ $\overline{B}^0 o \Lambda \bar{\Lambda}$	$< 2.7 \times 10^{-7}$	$< 1.1 \times 10^{-7}$ $< 3.2 \times 10^{-7}$	$< 1.4 \times 10^{-6}$ $< 1.2 \times 10^{-6}$
\overline{B} \mathcal{B}_1 \mathcal{B}_1 $\overline{\mathcal{B}}_2$	$\begin{array}{c} B^- \to \Lambda \bar{p} \\ B^- \to \Sigma^{*0} \bar{p} \\ B^- \to \Lambda \bar{\Delta}^- \\ B^- \to p \bar{\Delta}^{} \\ \overline{B}^0 \to \Sigma^{*+} \bar{p} \\ \overline{B}^0 \to \Lambda \bar{\Delta}^0 \end{array}$		$< 3.2 \times 10^{-7} < 4.7 \times 10^{-7} < 8.2 \times 10^{-7} < 1.4 \times 10^{-7} < 2.6 \times 10^{-7} < 9.3 \times 10^{-7}$	$< 1.5 \times 10^{-6}$
1E-3				· ·]
1E-4 - CLEO ARGUS	• S	DLPHI		
(dd 1E-5 - C 	LEO	ALEPH		
H 1E-6		CLEO	CLEO	
1E-7 -			Belle	Belle Belle
1985	1990	1995 Vear	2000 2	005 2010

charmless 2-body baryonic B decays

	CZ	Jarfi et al.	CY	Expt.
$\overline{B}^0 o p \overline{p}$	1.2×10^{-6}	7.0×10^{-6}	1.1×10^{-7}	$< 1.1 \times 10^{-7}$
$\overline{B}^0 \to n \bar{n}$	3.5×10^{-7}	7.0×10^{-6}	$1.2 \times 10^{-7\dagger}$	
$B^- \rightarrow n\bar{p}$	6.9×10^{-7}	1.7×10^{-5}	5.0×10^{-7}	
$\overline{B}^0 \to \Lambda \bar{\Lambda}$		2×10^{-7}	0†	$< 3.2 \times 10^{-7}$
$B^- \rightarrow p \bar{\Delta}^{}$	2.9×10^{-7}	3.2×10^{-4}	1.4×10^{-6}	$< 1.4 \times 10^{-7}$
$\overline{B}^0 \to p \bar{\Delta}^-$	7×10^{-8}	1.0×10^{-4}	1.4×10^{-7}	
$B^- \rightarrow n \bar{\Delta}^-$		1×10^{-7}	4.6×10^{-7}	
$\overline{B}^0 \to n \bar{\Delta}^0$		1.0×10^{-4}	4.3×10^{-7}	
$B^- \to \Lambda \bar{p}$	$\lesssim 3 \times 10^{-6}$		$2.2 \times 10^{-7\dagger}$	$< 3.2 \times 10^{-7}$
$\overline{B}^0 \to \Lambda \bar{n}$			$2.1 imes 10^{-7\dagger}$	
$\overline{B}^0 \to \Sigma^+ \bar{p}$	6×10^{-6}		$1.8 imes 10^{-8\dagger}$	
$B^- \to \Sigma^0 \bar{p}$	3×10^{-6}		$5.8 imes 10^{-8\dagger}$	
$B^- \to \Sigma^+ \bar{\Delta}^{}$	6×10^{-6}		2.0×10^{-7}	
$\overline{B}^0 \to \Sigma^+ \bar{\Delta}^-$	6×10^{-6}		6.3×10^{-8}	
$B^- \to \Sigma^- \bar{\Delta}^0$	2×10^{-6}		8.7×10^{-8}	

CZ=Chernyak & Zhitnitsky ('90), CY= Cheng & Yang ('02) 12

Similar to the pQCD calculation of $B \rightarrow \Lambda_c p$ (46 Feynman diagrams) by He, T.Li, X.Q.Li, Y.M.Wang, hep-ph/0607178

LHCb can expect to make an observation (i.e. achieve a 5 significance) with 2 fb⁻¹ of data, even if the true branching ratio of $B \rightarrow pp$ is significantly below the current experimental upper limit. Extensive studies of baryonic B decays in Taiwan both experimentally and theoretically

Expt.	Theory
Belle group at NTU (Min-Zu Wang,…)	Chen, Chua, Geng, He, Hou, Hsiao, Tsai, Yang, HYC
B ⁻ →ppK ⁻ : first observation of charmless baryonic B decay ('01)	Publication after 2000: (hep-ph)
В→р р (К,К [*] ,π)	0008079, 0107110, 0108068, 0110263,
$\rightarrow \Lambda \overline{\mathbf{p}}(\pi, \mathbf{K})$	0112245, 0112294, 0201015, 0204185, 0204186, 0208185, 0210275, 0211240,
$\rightarrow \Lambda \overline{\Lambda} K$	0302110, 0303079, 0306092, 0307307,
$B \rightarrow p\overline{p}, \Lambda \overline{\Lambda}, p\overline{\Lambda}$ (stringent limits)	0311035, 0405283, 0503264, 0509235, 0511305, 0512335, 0603003, 0603070,
B → p $\overline{\Lambda}$ γ: first observation of b→sγ penguin in baryonic B decays ('04)	0605127, 0606036, 0606141, 0607061, 0607178, 0608328, 0609133, 0702249, PRD(05,not on hep-ph), 0707.2751,
Publication after 2002:	0801.0022, 0806.1108, 0902.4295, 0902.4831
3 papers (first author) so far: 7PRL,	
	Taiwan contributos to 84% of theory

Taiwan contributes to 84% of theory papers

$D^0 - D^0$ mixing

mass eigenstates: $|D_{1,2}>= p|D^0> \pm q |D^0>$ mixing parameters:

 $\mathbf{x}=(\mathbf{m}_1 - \mathbf{m}_2)/\Gamma, \mathbf{y}=(\Gamma_1 - \Gamma_2)/2\Gamma$

In SM, short-distance contributions to x & y are very small, of order 10⁻⁶ H.Y.C. ('82); Datta, Kumbhakar ('85) b quark contribution is negligible due to $V_{cd}V_{ub}^*$

d, s, b

 d, \overline{s}, b

 D^0

GIM cancellation

	x (%)	у (%)	q/p	φ (°)
2009	0.98+0.24-0.20	0.83±0.16	0.87 ^{+0.17} -0.15	-8.5 ^{+7.4} -7.0
FPCP2010	0.59±0.20	0.80±0.13	0.91 ^{+0.19} -0.16	-10.0 ^{+9.3} -8.7
Charm2010	0.55 ^{+0.12} -0.13	0.83±0.13		

BaBar('10): $x = (1.6 \pm 2.3 \pm 1.2 \pm 0.8) 10^{-3}$ $y = (5.7 \pm 2.0 \pm 1.3 \pm 0.7) 10^{-3}$ Theory predictions

 inclusive: 1/m_c expansion [Georgi; Ohl, Ricciardi, Simmons; Bigi, Uraltsev] [Lenz et al.]
 exclusive: sum over intermediate states, vanish in SU(3) limit. Only SU(3) effect in phase space was considered by

Falk, Grossman, Lighti, Petrov ('02)

$$\Delta m = \frac{1}{m_D} \langle D^0 | H_w | \overline{D}^0 \rangle + \frac{1}{2m_D} \mathcal{P} \sum_n \frac{1}{\mathcal{N}} \frac{\langle D^0 | H_w | n \rangle \langle n | H_w | \overline{D}^0 \rangle + \langle \overline{D}^0 | H_w | n \rangle \langle n | H_w | D^0 \rangle}{m_D - E_n}$$
$$\Delta \Gamma = \frac{1}{2m_D} \sum_n \frac{1}{\mathcal{N}} \left[\langle D^0 | H_w | n \rangle \langle n | H_w | \overline{D}^0 \rangle + \langle \overline{D}^0 | H_w | n \rangle \langle n | H_w | D^0 \rangle \right] (2\pi) \delta(m_D - E_n)$$

 Δm , $\Delta \Gamma$ induced by off-shell & on-shell intermediate states

Mode	BR
PP	$\sim 10\%$
VP	$\sim 28\%$
VV	$\sim 10\%$
SP	$\sim 4.2\%$
AP	$\sim 10\%$
TP	$\sim 0.3\%$
2-body	$\sim 63\%$
hadronic	$\sim 84\%$
semileptonic	$\sim 16\%$

Approach based on 2-body decay data:

(i) Two-body decays account for 75% of hadronic rates of D mesons, (ii) PP, VP data with good precision for CF & SCS modes are available, (iii) As-yet unmeasured DCS modes are determined from topological approach

For 2-body intermediate states

$$x \approx \frac{m_D}{4\pi} \sum_n \eta_{\rm CKM}(n) \eta_{\rm CP}(n) \cos \delta_n \sqrt{\mathcal{B}(D^0 \to n) \mathcal{B}(D^0 \to \bar{n})} \frac{I(m_1, m_2, \Lambda)}{p_c(n)} \qquad \text{Burdman,}$$
 Shipsey

- $y \approx \sum_{n} \eta_{\text{CKM}}(n) \eta_{\text{CP}}(n) \cos \delta_n \sqrt{\mathcal{B}(D^0 \to n) \mathcal{B}(D^0 \to \bar{n})}$ Donoghue et al; Wolfenstein
 - δ_n : strong phase between $D^0 \rightarrow n$ and $\underline{D}^0 \rightarrow n$
 - η_{CKM} = ±1, depending on number of s and <u>s</u> quarks in the final state
 - Large cancellation of SCS with CF and DCS, perfect in SU(3) limit

	PP	VP	VV
x(%)	0.032±0.005	0.073±0.021	
y(%)	0.086±0.041	0.269±0.253	0.037

HYC, Chiang ('10)

Assume $cos \delta_n$ =1, recalling that $cos \delta_{K\pi}$ =1.03^{+0.31}-0.18 by CLEO

X_{PP+VP} = (0.10±0.02)%

y_{PP+VP} = (0.36±0.26)%

x ~ (0.2-0.4)%, y ~ (0.5-0.7)%

BaBar: $\begin{cases} x = (1.6 \pm 2.3 \pm 1.2 \pm 0.8) 10^{-3} \\ y = (5.7 \pm 2.0 \pm 1.3 \pm 0.7) 10^{-3} \end{cases}$

- CP violation in charm decays
- **CP** violation in $B \rightarrow \pi^+ \pi^-$
- **dimuon asymmetry:** $B_s \underline{B}_s$ mixing angle ϕ_s
- **B-CP** puzzles: $\Delta A_{K\pi}$, polarization puzzle
- Mixing-induced CP asymmetries: Δsin2β

<u>ρ</u>=0.144±0.025 <u>η</u>=0.342^{+0.016}-0.015

Sensitivity of LHCb for γ at tree level is ~ 5°

A comment on the size of CPV

> Generic expectation is that CP-violating observables in the SM are small

Penguin amplitude

> The Unitarity Triangle for charm:

 $V_{ud}V_{cd}^* + V_{us}V_{cs}^* + V_{ub}V_{cb}^* = 0$ ~ λ ~ λ ~ λ^5 With b-quark contribution neglected: only 2 generations contribute ⇒ real 2x2 Cabibbo matrix

Any CP-violating signal in the SM will be small, at most $O(V_{ub}V_{cb}^*/V_{us}V_{cs}^*) \sim 10^{-3}$ Thus, O(1%) CP-violating signal can provide a "smoking gun" signature of New Physics

Alexey A Petrov (WSU & MCTP)

Direct CP asymmetries in D decays

SM: $A_{CP}(D^+ \rightarrow K_S \pi^+) = (-0.332 \pm 0.006)\%$

Decay	Expt.	Asymmetry	Decay	Expt.	Asymmetry
$D^0 \rightarrow \pi^+\pi^-$	BaBar	$-0.0024 \pm 0.0052 \pm 0.0022$	$D^0 \rightarrow K^+K^-$	BaBar	+0.0000 \pm 0.0034 \pm 0.0013
	Belle	+0.0043 \pm 0.0052 \pm 0.0012		Belle	$-0.0043 \pm 0.0030 \pm 0.0011$
	CDF	+0.0022 \pm 0.0024 \pm 0.0011		CDF	
$D^0 \rightarrow \pi^+ \pi^- \pi^0$	BaBar	$-0.0031 \pm 0.0041 \pm 0.0017$	$D^0 \rightarrow K^+ K^- \pi^0$	BaBar	+0.0100 \pm 0.0167 \pm 0.0025
	Belle	$+0.0043 \pm 0.0130$			
$D^+ \rightarrow K_S^{0} \pi^+$	BaBar	$-0.0044 \pm 0.0013 \pm 0.0010$	$D^{+} \rightarrow K_{S}^{0}K^{+}$	Belle	$0.0016 \pm 0.0058 \pm 0.0025$
	Belle	$-0.0071 \pm 0.0019 \pm 0.0020$		Focus	+0.071 \pm 0.061 \pm 0.012
$D_s^+ \rightarrow K_S^0 \pi^+$	Belle	+0.0545 \pm 0.0250 \pm 0.0033	$D_s^+ \rightarrow K_S^0 K^+$	Belle	+0.0012 \pm 0.0036 \pm 0.0022
	CLEO	+0.27 ± 0.11		CLEO	+0.049 \pm 0.021 \pm 0.009

A. Petrov: at most 10⁻³ in SM; 10⁻² is a "smoking gun" signature of NP

challenged recently by Lenz et al. (arXiv:1002.4794, see also Lenz's talk at Charm2010)

Belle-BaBar disagreement on $A_{CP}(\pi^+\pi^-)$

 Measurements with B⁰ performed by B factories. 1.9σ disagreement between Belle and BaBar measurements.

Year	BaBar	Belle	D
2001	$-0.25 \pm 0.45 \pm 0.14$		
2002	PRD 65, 051502 (33M)	0.04 +0.25 . 0.00	
2002	$-0.30 \pm 0.25 \pm 0.04$	$-0.94_{-0.31} \pm 0.09$	
	PRL 89, 281802 (88M)	PRL 89, 071801 (45M)	
2003	$-0.19 \pm 0.19 \pm 0.05$	$-0.77 \pm 0.27 \pm 0.08$	
	preliminary LP2003 (123M)	PRD 68, 012001 (85M)	
2004	$-0.09 \pm 0.15 \pm 0.04$	$-0.58 \pm 0.15 \pm 0.07$	
	PRL 95, 151803 (227M)	PRL 93, 021601 (152M)	
2005		$-0.56 \pm 0.12 \pm 0.06$	
		PRL 95, 101801 (275M)	
2006	$-0.16 \pm 0.11 \pm 0.03$	$-0.55 \pm 0.08 \pm 0.05$	
	ArXiv:0607106 (347M)	PRL 98, 211801 (535M)	
2007	$-0.21 \pm 0.09 \pm 0.02$		
	PRL 99, 021603 (383M)		
2008	$-0.25 \pm 0.08 \pm 0.02$		
	ArXiv:0807.4226 (467M)		

 $\mathbf{A}_{\pi\pi} = -\mathbf{C}_{\pi\pi}$

 1.9σ

 2.1σ

 $A_{CP}(\pi^{+}\pi^{-}) = \begin{cases} (17.0^{+4.5}_{-8.8})\% & QCDF \\ (18^{+20}_{-12})\% & pQCD \end{cases}$

 $B_s \rightarrow J/\psi \phi$

$$\phi_{s}^{J/\psi\varphi,SM} = -2\beta_{s} = 2\arg\left(-\frac{V_{tb}V_{ts}^{*}}{V_{cb}V_{cs}^{*}}\right) = -0.036 \pm 0.002$$

New results in $B_s \rightarrow J/\psi \phi$ by CDF and DØ demonstrate a better consistency with the SM at ~ 1σ

Like-Sign Dimuon Asymmetry at D0

arXiv:1005.2757 PRD arXiv:1007.0395 PRL (Pub August 16, 2010)

$$A_{sl}^{b} \equiv \frac{N_{b}^{++} - N_{b}^{--}}{N_{b}^{++} + N_{b}^{--}}$$

 $A_{sl}^{b} = (-0.957 \pm 0.251 (\text{stat}) \pm 0.146 (\text{syst}))\%$

D0 measurement differs from SM by 3.2σ

$$A_{sl}^{b}(SM) = -(2.3_{-0.6}^{+0.5})10^{-4}$$

Many citations: 65 as of 11/15/2010

W.S. Hou, Y.Y. Mao and C.H. Shen, arXiv:1003.4361 [hep-ph]; O. Eberhardt, A. Lenz, and J. Rohrwild, arXiv:1005.3505 [hep-ph]; A. Dighe, A. Kundu, and S. Nandi, arXiv:1005.4051 [hepph]; C.H. Chen and G. Faisel, arXiv:1005.4582 [hep-ph]; A.J. Buras, M.V. Carlucci, S. Gori, and G. Isidori, arXiv:1005.5310 [hep-ph]; Z. Ligeti, M. Papucci, G. Perez, and J. Zupan, arXiv:1006.0432 [hep-ph]; K.S. Babu and J. Julio, arXiv:1006.1092 [hep-ph]; Y. Li, S. Profumo, and M. Ramsey-Musolf, arXiv:1006.1440 [hep-ph]. U. Nierste, arXiv:1006.2078 [hep-ph]; B. Batell and M. Pospelov, arXiv:1006.2127 [hep-ph]; D. Choudhury and D.K. Ghosh, arXiv:1006.2171 [hep-ph]; M. Kurachi and T. Onogi, arXiv:1006.3414 [hep-ph]; A. Kostelecky and J. Tasson, arXiv:1006.4106 [gr-qc]. C.H. Chen, C.Q. Geng, and W. Wang, arXiv:1006.5216 [hep-ph]; J.K. Parry, arXiv:1006.5331 [hepph]; P. Ko and J.h. Park, arXiv:1006.5821 [hep-ph]; S.F. King, arXiv:1006.5895 [hep-ph]; C. Delaunay, O. Gedalia, S.J. Lee, and G. Perez, arXiv:1007.0243 [hep-ph]; C. Berger and L.M. Sehgal, arXiv:1007.2996 [hep-ph]; B. Dutta, Y. Mimura, and Y. Santoso, arXiv:1007.3696 [hep-ph]; C. Biggio and L. Calibbi, arXiv:1007.3750 [hep-ph]; M. Gronau and J.L. Rosner, arXiv:1007.4728 [hep-ph]; T. Gershon, arXiv:1007.5135 [hep-ph]; A.J. Buras, G. Isidori, and P. Paradisi, arXiv:1007.5291 [hep-ph]; A. Kostelecky and R. Van Kooten, arXiv:1007.5312 [hep-ph]; M. Kreps, arXiv:1008.0247 [hep-ex]; S. Collaboration, arXiv:1008.1541 [hep-ex].

B.A. Dobrescu, P.J. Fox, and A. Martin, Phys. Rev. Lett. 105, 041801 (2010) [arXiv:1005.4238 [hep-ph]]; C.W. Bauer and N.D. Dunn, arXiv:1006.1629 [hep-ph]; N.G. Deshpande, X.G. He, and G. Valencia, arXiv:1006.1682 [hep-ph]; Y. Bai and A.E. Nelson, arXiv:1007.0596 [hep-ph].

J. Kubo and A. Lenz, arXiv:1007.0680 [hep-ph].

Both B_d and B_s contribute to A_{sl}^b at Tevatron :

$$A_{sl}^{b} = (0.506 \pm 0.043)a_{sl}^{d} + (0.494 \pm 0.043)a_{sl}^{s}$$

 a^{q}_{sl} is the charge asymmetry of "wrong sign" semileptonic B^{0}_{q} (q = d, s) decays:

$$a_{sl}^{q} = \frac{\Gamma(\overline{B}_{q}^{0} \to \mu^{+}X) - \Gamma(B_{q}^{0} \to \mu^{-}X)}{\Gamma(\overline{B}_{q}^{0} \to \mu^{+}X) + \Gamma(B_{q}^{0} \to \mu^{-}X)}; \quad q = d, s$$

Using $a_{sl}^{d}(exp) = -0.0047 \pm 0.0046$ and D0 value of A_{sl}^{b} leads to $a_{sl}^{s} = -0.0146 \pm 0.0075$, much larger than $a_{sl}^{s}(SM) = (2.1 \pm 0.6)10^{-5}$ $a_{sl}^{s}(exp) = -(1.7 \pm 9.2)10^{-3}$ $a_{sl}^{s}(ave) = -0.0127 \pm 0.005$

$$a_{\rm sl}^{s} = \frac{4 \left| M_{s}^{12} \right| \left| \Gamma_{s}^{12} \right| \sin \phi_{s}}{4 \left| M_{s}^{12} \right|^{2} + \left| \Gamma_{s}^{12} \right|^{2}} \qquad \phi_{s} = \arg \left(-M_{s}^{12} / \Gamma_{s}^{12} \right)$$

Since
$$\Delta \Gamma_s \ll \Delta M_s$$
 and $|\Gamma_s^{12}| \ll |M_s^{12}|$,
 $\Delta M_s \simeq 2 |M_s^{12}|$, $\Delta \Gamma_s \simeq 2 |\Gamma_s^{12}| \cos \phi_s$

$$a_{\rm sl}^s \simeq \frac{\left|\Gamma_s^{12}\right| \sin \phi_s}{\left|M_s^{12}\right|} \simeq \frac{2\left|\Gamma_s^{12}\right| \sin \phi_s}{\Delta M_s}$$

Experimental values

$$\Delta M_s^{\text{exp}} = 17.77 \pm 0.12 \text{ ps}^{-1}$$
$$\Delta \Gamma_s^{\text{exp}} = 0.062^{+0.034}_{-0.037} \text{ ps}^{-1}$$

SM predictions

Lenz, Nieste; Kubo, Lenz

$$2 M_s^{12,\text{SM}} = 20.1(1 \pm 0.40) e^{-0.035i} \text{ ps}^{-1}$$
$$2 \left| \Gamma_s^{12,\text{SM}} \right| = 0.096 \pm 0.039 \text{ ps}^{-1}$$
$$\phi_s^{\text{SM}} = (4.2 \pm 1.4) \times 10^{-3} = 0.24^\circ \pm 0.08^\circ$$

See A. Lenz et al. arXiv:1008.1593 for a review of NP interpretation

One interesting possibility: "right sign" asymmetry

Kostelecky, Van Kooten

$$A_{sl}^{CPT} \equiv \frac{\Gamma(\overline{B}^{0} \to \mu^{-}X) - \Gamma(B^{0} \to \mu^{+}X)}{\Gamma(\overline{B}^{0} \to \mu^{-}X) + \Gamma(B^{0} \to \mu^{+}X)}$$

 $A_{sl}^{b} \approx a_{sl}^{cPT} - A_{sl}^{cPT}$

Assuming $a_{sl} = a_{sl}(SM) = A_{sl}^{b}(SM)$

 \Rightarrow A_{sl}^{CPT}=0.00713±0.00405

LHCb proposes to measure a^s_{sl} – a^d_{sl}

$$\Delta A_{fs} = (a_{fs}(B_s) - a_{fs}(B_d)) / 2 \quad @ LHCb$$

using semileptonic decays $B_{d,s} \rightarrow D\mu\nu$

Provide constrain 'orthogonal" 0.01 to DØ measurement

$$\Delta A_{fs} = (2.5^{+0.5}_{-0.6})10^{-4}$$
 in SM

See talk of W. Chao on Thursday

Direct CP asymmetries

$\underline{B}_{u}/\underline{B}_{d}$	Κ ⁻ π ⁺	$\pi^+\pi^-$	K⁻η	Κ *0η	Κ -ρ ⁰	$ ho^{\pm}\pi^{\mp}$
A _{CP} (%)	-9.8 ^{+1.2} _{-1.1}	38±6	-37±9	19±5	37±11	-13±4
S	8.5σ	6.3σ	4.1σ	3.8σ	3.4σ	3.3σ

$\underline{B}_{u}/\underline{B}_{d}$	Κ* -π+	ρ+ Κ -	Κ ⁻π ⁰	π ⁻ η	$\pi^0\pi^0$	$ ho^-\pi^+$
A _{CP} (%)	-18±7	15±6	5.0±2.5	-13±7	43 ⁺²⁵ -24	11±6
S	2.6σ	2.5σ	2.0σ	1.9σ	1.8σ	1.8σ

ΔΑ_{Kπ} 14.8±2.8 5.3σ

Belle, (16.4±3.7)% 4.4 σ Nature (2008) $\Delta A_{K\pi} \equiv A_{CP}(K^{-}\pi^{0}) - A_{CP}(K^{-}\pi^{+})$

CDF: $A_{CP}(\underline{B}_{s} \rightarrow K^{+}\pi^{-})=0.39\pm0.17$ (2.3 σ)

In heavy quark limit, decay amplitude is factorizable, expressed in terms of form factors and decay constants.

Encounter several difficulties:

- **4** Rate deficit puzzle: BFs are too small for penguin-dominated PP,VP,VV modes and for tree-dominated decays $\pi^0\pi^0$, $\rho^0\pi^0$
- **4** CP puzzle:

CP asymmetries for $K^-\pi^+$, $K^{*-}\pi^+$, $K^-\rho^0$, $\pi^+\pi^-$ are wrong in signs

4 Polarization puzzle:

 f_T in penguin-dominated $B \rightarrow VV$ decays is too small

⇒ 1/m_b power corrections !

$\underline{B}_{u}/\underline{B}_{d}$	K⁻π+	$\pi^+\pi^-$	K⁻η	K*⁰η	K⁻p⁰	ρ [±] π [∓]
A _{CP} (%)	-9.8 ^{+1.2} _{-1.1}	38±6	-37±9	19±5	37±11	-13±4
S	8.5σ	6.3σ	4.1σ	3.8σ	3.4σ	3.3σ
$m_b \rightarrow \infty$	×	×	\checkmark	\checkmark	×	×

$\underline{B}_{u}/\underline{B}_{d}$	K*-π+	ρ⁺K⁻	K⁻π ⁰	π ⁻ η	$\pi^0\pi^0$	$ ho^-\pi^+$
A _{CP} (%)	-18±7	15±6	5.0±2.5	-13±7	43 ⁺²⁵ -24	11±6
S	2.6σ	2.5σ	2.0σ	1.9σ	1.8σ	1.8σ
$m_b \rightarrow \infty$	×	×	\checkmark	\checkmark	\checkmark	×

<u>B</u> s	K*-π+
A _{CP} (%)	-18±7
S	2.6σ
$m_b \rightarrow \infty$	×

$$A_{ann} = \frac{G_F}{\sqrt{2}} f_B f_{M_1} f_{M_2} \frac{C_F}{N_c^2} \pi \alpha_s \int_0^1 dx dy \left[\Phi_{M_1}(x) \Phi_{M_2}(y) \left(\frac{1}{y(1 - x\overline{y})} + \frac{1}{\overline{x}^2 y} \right) + \dots \right]$$

has endpoint divergence: X_A and X_A^2 with $X_A \equiv \int_0^1 dy/y$

$$X_{A} \equiv \int_{0}^{1} \frac{dy}{y} = \ln \frac{m_{B}}{\Lambda_{h}} \left(1 + \rho_{A} e^{i\varphi_{A}} \right) \qquad \text{BBNS}$$

Adjust ρ_A and ϕ_A to fit BRs and $A_{CP} \Rightarrow \rho_A \approx$ 1.10, $\phi_A \approx$ -50°

Im($\alpha_4^{c} + \beta_3^{c}$) \approx -0.039 (Im $\alpha_4^{c} \approx$ 0.013)

New CP puzzles

	K⁻π+	$\pi^+\pi^-$	К⁻ղ	K*⁰η	K⁻p⁰	$ ho^{\pm}\pi^{\mp}$	
A _{CP} (%)	-9.8 ^{+1.2} -1.1	38±6	-37±9	19±5	37±11	-13±4	
S	8.5σ	6.3σ	4.1σ	3.8σ	3.4σ	3.3σ	
$m_b \rightarrow \infty$	×	×	\checkmark	\checkmark	×	×	
PA	\checkmark	\checkmark	×	×	\checkmark	\checkmark	ΔA 14.8
	1/*- +				_0_0		5
	κ […] π ⁺	ρ™rs	K⁻π°	π-η	π°π°	$ ho^-\pi^+$	5.
$A_{CP}(\%)$	-18±7	15±6	5.0±2.5	-13±7	43 ⁺²⁵ -24	11±6	≈ 3
S	2.6σ	2.5σ	2.0σ	1.9σ	1.8σ	1.8σ	× (?
$m_b \rightarrow \infty$	×	×	\checkmark	\checkmark	\checkmark	×	
PA	\checkmark	\checkmark	×	×	×	\checkmark	

Penguin annihilation solves CP puzzles for $K^-\pi^+, \pi^+\pi^-, ...,$ but in the meantime introduces new CP puzzles for K⁻η, K^{*0}η, ...

Also true in SCET with penguin annihilation replaced by charming penguin 35

All "problematic" modes receive contributions from $\lambda_u C + \lambda_c P_{EW}$

$$A(\bar{B}^0 \to K^- \pi^+) = \lambda_{\mu} T + \lambda_c (P + \frac{2}{3} P_{\rm EW}^c + P_A), -\sqrt{2}A(\bar{B}^0 \to \bar{K}^0 \pi^0) = -\lambda_{\mu}C + \lambda_c (P - P_{\rm EW} - \frac{1}{3} P_{\rm EW}^c + P_A), A(B^- \to \bar{K}^0 \pi^-) = \lambda_{\mu}A + \lambda_c (P - \frac{1}{3} P_{\rm EW}^c + P_A), \rightarrow \sqrt{2}A(B^- \to K^- \pi^0) = \lambda_{\mu}(T + C + A) + \lambda_c (P + P_{\rm EW} + \frac{2}{3} P_{\rm EW}^c + P_A),$$

 $\Delta A_{K\pi} \approx 0$ if C, P_{EW} , A are negligible $\Rightarrow \Delta A_{K\pi}$ puzzle

 $P_{EW} \propto$ (- a_7 + a_9), $P_{EW} \propto$ (a_{10} + $r_{\chi}a_8$), $\lambda_u = V_{ub}V_{us}^*$, $\lambda_c = V_{cb}V_{cs}^*$

 $\Delta A_{K\pi}$ puzzle can be resolved by having a large complex C (C/T ~ $0.5e^{-i55^\circ}$) or a large complex P_{EW} or the combination

Large complex C: Charng, Li, Mishima; Kim, Oh, Yu; Gronau, Rosner; ...

Large complex P_{EW} needs New Physics for new strong & weak phases Yoshikawa; Buras et al.; Baek, London; G. Hou et al.; Soni et al.; Khalil et al. 36 $\pi^{0}\pi^{0}$ puzzle: A_{CP}=(43⁺²⁵-24)%, Br = (1.55±0.19)×10⁻⁶

The two distinct scenarios can be tested in tree-dominated modes where $\lambda'_c P_{EW} \ll \lambda'_u C$. CP puzzles of $\pi^-\eta$, $\pi^0\pi^0$ & large rates of $\pi^0\pi^0$, $\rho^0\pi^0$ cannot be explained by a large P_{EW}

Power corrections have been systematically studied by

- Beneke, Neubert: S2, S4
- Ciuchini et al.: 0801.0341
- Duraisamy & Kagan: 0812.3162 (soft overlap)
- Li & Mishima: 0901.1272 (Glauber gluons)

	K ⁻ π ⁺	$\pi^+\pi^-$	K⁻η	K ^{∗0} η	Κ -ρ ⁰	$ ho^{\pm}\pi^{\mp}$
A _{CP} (%)	-9.8 ^{+1.2} -1.1	38±6	-37±9	19±5	37±11	-13±4
S	8.5σ	6.3σ	4.1σ	3.8σ	3.4σ	3.3σ
$m_b \rightarrow \infty$	×	×	\checkmark	\checkmark	×	×
PA	\checkmark	\checkmark	×	×	\checkmark	\checkmark
large complex a ₂	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	K*-π+	ο+ Κ -	K ⁻ π ⁰	<i>π</i> -n	$\pi^0\pi^0$	$0^{-}\pi^{+}$
A _{CP} (%)	-18±7	15±6	5.0±2.5	-13±7	43 ⁺²⁵ -24	11±6
S	2.6σ	2.5σ	2.0σ	1.9σ	1.8σ	1.8σ
m _b →∞	×	×	\checkmark	\checkmark	\checkmark	×
PA	\checkmark	\checkmark	×	×	×	\checkmark
large complex a ₂	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

All new CP puzzles can be accommodated ! No more rate deficit for $\pi^0\pi^0$ & $\pi^0\rho^0$

$B^{-} \rightarrow K^{-} \pi^{0}$

$$\begin{array}{l}\mathsf{A}(\mathsf{B}^{0}\to\mathsf{K}^{\text{-}}\pi^{\text{+}}) &=\mathsf{A}_{\pi\mathsf{K}}(\delta_{\mathsf{pu}}\alpha_{1}+\alpha_{4}{}^{\mathsf{p}}+\beta_{3}{}^{\mathsf{p}}) & \alpha_{1}=\mathsf{a}_{1},\,\alpha_{2}=\mathsf{a}_{2}\\ \sqrt{2}\,\mathsf{A}(\mathsf{B}^{\text{-}}\to\mathsf{K}^{\text{-}}\pi^{0}) =\mathsf{A}_{\pi\mathsf{K}}(\delta_{\mathsf{pu}}\alpha_{1}+\alpha_{4}{}^{\mathsf{p}}+\beta_{3}{}^{\mathsf{p}})+\mathsf{A}_{\mathsf{K}\pi}(\delta_{\mathsf{pu}}\alpha_{2}+3/2\alpha_{3,\mathsf{EW}}{}^{\mathsf{p}})\end{array}$$

In absence of C and P_{EW} , $K^{-}\pi^{0}$ and $K^{-}\pi^{+}$ have similar CP violation

$$A_{CP}(K^{-}\pi^{0}) = -2\sin\gamma \operatorname{Im} r_{FM} / R_{FM} - 2\sin\gamma \operatorname{Im} r_{C}$$

$$r_{FM} = \left| \frac{V_{ub}V_{us}^{*}}{V_{cb}V_{cs}^{*}} \right| \frac{a_{1}}{-(a_{4}^{c} + r_{\chi}^{K}a_{6}^{c})}, \qquad r_{C} = \left| \frac{V_{ub}V_{us}^{*}}{V_{cb}V_{cs}^{*}} \right| \frac{f_{\pi}F_{0}^{BK}(0)}{f_{K}F_{0}^{B\pi}(0)} - (\alpha_{4}^{c} + \beta_{3}^{c})} \qquad \operatorname{arg}(a_{2}) = -58^{\circ}$$

	m _b →∞	penguin ann	large complex a ₂	Expt
$A_{CP}(K\text{-}\pi^0)(\%)$	7.3	-5.5	4.9 ^{+5.9} -5.8	5.0±2.5
$\Delta A_{K\pi}$ (%)	3.3	1.9	12.3 ^{+3.0} -4.8	14.8±2.8

$$A_{CP}(t) = \frac{\Gamma(\overline{B}^{0}(t) \to f) - \Gamma(B^{0}(t) \to f)}{\Gamma(\overline{B}^{0}(t) \to f) + \Gamma(B^{0}(t) \to f)} = S_{f} \sin \Delta mt - C_{f} \cos \Delta mt$$

$$B^{0} \qquad A_{f_{CP}} \qquad A_{f_{CP}} \qquad f_{CP}$$

$$B^{0} \qquad A_{f_{CP}} \qquad f_{CP}$$

C_f (= - A_f) meaures direct CPV, S_f is related to CPV in interference between mixing & decay amplitude

In SM, $-\eta_f S_f \approx sin 2\beta$, $C_f \approx 0$ for $b \rightarrow s$ penguin-dominated modes

 $(\sin 2\beta)_{SM} = 0.867 \pm 0.048$ deviates from $(\sin 2\beta)_{expt}$ by 3.3 σ Lunghi, Soni

 $\sin(2\beta^{\text{eff}}) \equiv \sin(2\phi_1^{\text{eff}})$

 $sin(2\beta^{eff})/sin(2\phi_1^{eff})$

b→ccs	World Average		0.69 ± 0.03	b→ccs	World Average			0.67 ± 0.02
_	BaBar +		$0.50 \pm 0.25^{+0.07}$	Ŷ	Babar			$0.26 \pm 0.26 \pm 0.03$
∣ °⊻	Belle		$0.44 \pm 0.27 \pm 0.05$	4	Average	1 2		0.56 +8:18
- -	Average	A al	0.47 ± 0.03	0	BaBar	·····		$0.57 \pm 0.08 \pm 0.02$
	Average	· • • • • • • • • • • • • • • • • • • •	0.47 ± 0.19	×	Belle	:	-	$0.64 \pm 0.10 \pm 0.04$
○	Babar –	3	$0.36 \pm 0.13 \pm 0.03$	ું ગુ	Average			0.59 ± 0.07
× ×	Belle		0.62 ± 0.12 ± 0.04	×	BaBar	1		- 0.90 .0.20 -0.04
	Average		0.50 ± 0.09	X Y	Belle		<u>a</u>	$0.30 \pm 0.32 \pm 0.08$
	BaBar		$-$ 0.95 $+0.23 \pm 0.10$	Ś	Average :			0.74 ± 0.17
∣ ¥"	Belle		$0.47 \pm 0.36 \pm 0.08$	× -	Belle			$0.55 \pm 0.20 \pm 0.03$ 0.67 ± 0.31 ± 0.08
	Average	741.6	$0.47 \pm 0.00 \pm 0.00$	°2	Average	<u>ц</u> 8		0.57 ± 0.17
ļ	Average		0.75 ± 0.24	0	BaBar		rc	.35 +0.26 ± 0.06 ± 0.03
S	Babar	1	$0.35_{-0.33} \pm 0.04$	X	Belle		C	$0.64 + 0.19 \pm 0.09 \pm 0.10$
× ×	Belle – 关		0.22 ± 0.47 ± 0.08	٩	Average			0.54 +0.18
o β	Average	2	0.31 ± 0.26	Ś	BaBar		-	0.55 .0.29 ± 0.02
·····×	BaBar		$-0.84 \pm 0.71 \pm 0.08$	2	Belle			$0.11 \pm 0.46 \pm 0.07$
µ° ⊣	Average		-0.84 + 0.71		BaBar	·····	1	0.45 ± 0.24
@	BaBar		$0.51^{+0.35} \pm 0.02$	X S	Belle			0.63 +8:16
s í	Balla		$0.01 \pm 0.39 \pm 0.02$	t	Average	i <mark>- 1</mark>		0.62 +0:11
	Delle		$-0.95 \pm 0.53_{-0.15}$	×	BaBar		0.4	$B \pm 0.52 \pm 0.06 \pm 0.10$
3	Average	E AE	0.64 ± 0.30	N	Average		0	0.48 ± 0.53
∣ ¥"	BaBar 🕴 😽 📩 📩		0.17 ± 0.52 ± 0.26	, ×	BaBar		0.2	$0 \pm 0.52 \pm 0.07 \pm 0.07$
°	Average	Č <u>e</u>	0.17 ± 0.58	¥	BeBar		1	0.20 ± 0.53
Y C	BaBar	0.4	$1 \pm 0.18 \pm 0.07 \pm 0.11$	°R 0	Average			$-0.72 \pm 0.71 \pm 0.00$
	Belle		$60 \pm 0.18 \pm 0.04^{+0.19}$	ne *	BaBar	·····		0.97 +0.63
× ×	Average	la V	$0.51 \pm 0.14 \pm 0.11$	Σ°κ	Average		2 9	0.97 +0.03
Y ω_	Average		$0.51 \pm 0.14_{-0.08}$	v +	BaBar		0.0	$1\pm0.31\pm0.05\pm0.09$
Ι X	BaBar		$0.63_{-0.32} \pm 0.04$	12.9	Average	<u> </u>		0.01 ± 0.33
∣ ×ຶ	Belle -		0.58 ± 0.36 ± 0.08	+	Ballo			$0.86 \pm 0.08 \pm 0.03$
ု လ	Average		0,61 ± 0.23	E X	Average			0.82 ± 0.07
<u></u>	i	المراد والألك أحسا		L	, troidgo j		152	0.02 ± 0.07
-3	-2 -1 0	1	1 2 3	-2	-1	0	4	2

2006: $sin2\beta^{eff}=0.50\pm0.06$ from $b \rightarrow q\underline{q}s$, $sin2\beta=0.69\pm0.03$ from $b \rightarrow c\underline{c}s$ 2010: $sin2\beta^{eff}=0.64\pm0.04$ from $b \rightarrow q\underline{q}s$, $sin2\beta=0.67\pm0.02$ from $b \rightarrow c\underline{c}s$

 $\Delta S_{f} = -\eta_{f}S_{f} - \sin 2\beta$

HYC, Chua ('09)

Mode	QCDF	pQCD	Expt	Average
ղ'K _s	0.00 +0.01 -0.01	-0.06 ^{+0.50} -0.91	-0.10±0.08 -0.03±0.11	-0.08±0.07
ղ K s	0.12 ^{+0.09} -0.08	-0.07 ^{+0.50} -0.92		
$\pi^0 K_S$	0.12 ^{+0.07} -0.06	0.06 ^{+0.02} -0.03	-0.12±0.20 0.00±0.32	-0.10±0.17
φK _S	0.022+0.044-0.002	0.02±0.01	-0.41±0.26 0.23 ^{+0.09} -0.19	-0.11 ^{+0.16} -0.18
ωK _S	0.17 ^{+0.06} -0.08	0.15 ^{+0.03} -0.07	-0.12 ^{+0.26} - _{0.29} -0.56±0.47	-0.22±0.24
ρ⁰ Κ Տ	-0.17 ^{+0.09} -0.18	-0.19 ^{+0.10} -0.06	-0.32 ^{+0.27} -0.31 -0.03 ^{+0.23} -0.28	-0.13 ^{+0.18} -0.21

Except for $\rho^0 K_s$, the predicted ΔS_f tend to be positive, while they are negative experimentally

$B \rightarrow VV decays$

Polarization puzzle in charmless <u>B</u> → VV decays

$$A_0: A_-: A_+ = 1: \frac{\Lambda_{QCD}}{m_b}: \left(\frac{\Lambda_{QCD}}{m_b}\right)^2$$

In transversity basis $A_{\perp} = (A^{-} + A^{+})/\sqrt{2}, \quad A_{\parallel} = (A^{-} - A^{+})/\sqrt{2}$

 $f_T \equiv f_{\parallel} + f_{\perp} = 1 - f_L = O(m_V^2 / m_B^2), \quad f_{\parallel} / f_{\perp} = 1 + O(m_V / m_B)$ Why is f_T so sizable ~ 0.5 in B \rightarrow K^{*}Á decays ?

NLO corrections alone can lower f_L and enhance f_T significantly !

$$\frac{\mathcal{A}^{-}}{\mathcal{A}^{0}}\bigg|_{\bar{B}\to\bar{K}^{*}\phi} \approx \left(\frac{\alpha_{3}^{-}+\alpha_{4}^{c,-}-\frac{1}{2}\alpha_{3,\mathrm{EW}}^{-}}{\alpha_{3}^{0}+\alpha_{4}^{c,0}-\frac{1}{2}\alpha_{3,\mathrm{EW}}^{0}}\right) \begin{pmatrix} X_{\bar{K}^{*}\phi}^{-}\\ X_{\bar{K}^{*}\phi}^{0} \end{pmatrix} \qquad \text{Beneke,Rohere,Yang}$$

constructive (destructive) interference in A⁻ (A⁰) \Rightarrow f_L¹/₄ 0.58

Although f_L is reduced to 60% level, polarization puzzle is not resolved as the predicted rate, BR » 4.3£10⁻⁶, is too small compared to the data, » 10£10⁻⁶ for B \rightarrow K^{*}Á

(S-P)(S+P) penguin annihilation contributes to A⁻⁻ & A⁰⁰ with similar amount

$$A_0^{PA}: A_-^{PA}: A_+^{PA} = \left(\frac{\Lambda_{QCD}}{m_b} \ln \frac{m_b}{\Lambda_h}\right)^2 : \left(\frac{\Lambda_{QCD}}{m_b} \ln \frac{m_b}{\Lambda_h}\right)^2 : \left(\frac{\Lambda_{QCD}}{m_b}\right)^4$$

Br & f_L are fitted by $\frac{1}{2}A = 0.60$, $\dot{A}_A = -50^\circ$

Decay	B			f_L	f_{\perp}	
Docuj	Theory	Expt	Theory	Expt	Theory	Expt
$B^- \to K^{*-} \phi \ ^c$	$10.0^{+1.3+14.1}_{-1.1-6.3}$	10.0 ± 1.1	$0.49\substack{+0.51\\-0.38}$	0.50 ± 0.05	$0.25\substack{+0.20 \\ -0.25}$	0.20 ± 0.05
$\overline{B}^0 \to \bar{K}^{*0} \phi$	$9.5^{+1.2+13.5}_{-1.1-\ 6.1}$	9.5 ± 0.8	$0.50\substack{+0.50\\-0.38}$	0.484 ± 0.034	$0.25\substack{+0.19 \\ -0.25}$	0.256 ± 0.032

f_{||} ¼ f_? » 0.25

Polarization puzzle in $B \rightarrow TV$

For both $B \rightarrow K^* \phi$, $K^* \omega$, $K^{*0} \rho^0$, $f_T / f_L \sim 1$

 $f_{L}(K_{2}^{*+\omega}) = 0.56 \pm 0.11, f_{L}(K_{2}^{*0}\omega) = 0.45 \pm 0.12,$

 $f_{L}(K_{2}^{*}+\phi) = 0.80\pm0.10, f_{L}(K_{2}^{*0}\phi) = 0.901^{+0.059}_{-0.069}$

Why is $f_T/f_L \ll 1$ for $B \rightarrow K_2^* \phi$ and $f_T/f_L \sim 1$ for $B \rightarrow K_2^* \omega$?

f_L is very sensitive to the phase ϕ_A^{TV} for $B \rightarrow K_2^* \phi$, but not so sensitive to ϕ_A^{VT} for $B \rightarrow K_2^* \omega$ HYC, K.C. Yang ('10)

 $f_L(K_2^*\phi) = 0.88, 0.72, 0.48$ for $\phi_A^{TV} = -30^\circ$, -45° , -60° , $f_L(K_2^*\omega) = 0.68, 0.66, 0.64$ for $\phi_A^{VT} = -30^\circ$, -45° , -60°

Rates & polarization fractions can be accommodated by

$$ho_A^{TV} = 0.65, \qquad \phi_A^{TV} = -33^\circ, \qquad
ho_A^{VT} = 1.20, \qquad \phi_A^{VT} = -60^\circ$$

but no dynamical explanation is offered

BaBar

Conclusions

Search for NP in the systems where null effects are predicted by SM, e.g. CP violation in D sector.

Current B-CP puzzles & polarization anomaly do not necessarily imply NP