Precision Measurements in the LHC Era: Selected Topics

Z. Zhang LAL, Univ. Paris-Sud IN2P3/CNRS

Outline

1. e+e- annihilation data and $\alpha(M_Z)$, (g-2)_µ 2. HERA, PDFs and impact on LHC physics

LHC vs. e+e- & ep colliders

Selected Topic One: e+e- annihilation data and QED a(M_z) & muon magnetic moment anomaly g-2

New results:

- Davier, Hoecker, Malaescu, ZZ, arXiv:1010.4180, submitted to Eur. Phys. J. C

Earlier results:

- Davier et al., Eur. Phys. J. C66 (2010) 127
- Davier, Hoecker, Malaescu, Yuan and ZZ, Eur. Phys. J. C66 (2010) 1
- Davier, Eidelman, Hoecker and ZZ (DEHZ), Eur. Phys. J. C27 (2003) 497
- Davier, Eidelman, Hoecker and ZZ, Eur. Phys. J. C31 (2003) 503

Motivation for a Precise Prediction of $\alpha(M_z)$

- $\Box \quad \alpha(M_Z) = \alpha/(1 \Delta \alpha(M_Z)) \text{ with } \Delta \alpha(M_Z) = \Delta \alpha_{\text{lep}}(M_Z) + \Delta \alpha_{\text{had}}(M_Z)$
 - $\alpha = 1/137.035999084(51)$ best determined from (g-2)_e
 - $\alpha(M_Z)$ less precisely known than G_{μ} , M_Z

Hanneke, Fogwell, Gabrielse, 2008

 \rightarrow Important to improve the precision of $\Delta \alpha_{had}^{(5)}$

Hadronic Vacuum Polarization

<u>Define</u>: photon vacuum polarization function $\Pi_{\gamma}(q^2)$

$$i\int d^4x \ e^{iqx} \left\langle 0 \left| T J^{\mu}_{em}(x) \left(J^{\nu}_{em}(x) \right)^{\dagger} \right| 0 \right\rangle = - \left(g^{\mu\nu} q^2 - q^{\mu} q^{\nu} \right) \prod_{\gamma} (q^2)$$

<u>Ward identities</u>: only vacuum polarization modifies electron charge

 $\alpha(s) = \frac{\alpha(0)}{1 - \Delta\alpha(s)} \quad \text{with:} \quad \Delta\alpha(s) = -4\pi\alpha \operatorname{Re}\left[\prod_{\gamma}(s) - \prod_{\gamma}(0)\right] \\ = \Delta\alpha_{\operatorname{lep}}(s) + \Delta\alpha_{\operatorname{had}}(s)$

Leptonic $\Delta \alpha_{\text{lep}}(s)$ calculable in QED. However, quark loops are modified by long-distance hadronic physics, cannot (yet) be calculated within QCD (!)

Way out: Optical Theorem (*unitarity*) and the subtracted dispersion relation of $\Pi_{\gamma}(q^{2})$ (*analyticity*) $\Pi_{\gamma}(s) - \prod_{\gamma}(0) = \frac{s}{\pi} \int_{0}^{\infty} ds' \frac{\text{Im} \prod_{\gamma}(s')}{s'(s'-s) - i\varepsilon} \quad \text{int} \quad \Delta \alpha_{had}(s) = -\frac{\alpha s}{3\pi} \text{Re} \int_{0}^{\infty} ds' \frac{R(s')}{s'(s'-s) - i\varepsilon}$

Zhiqing Zhang (zhangzq@lal.in2p3.fr, LAL, Orsay)

... and Muon Anomalous Magnetic Moment g-2

Why do we need to know it so precisely?

Experimental progress on g-2

Miller, de Rafael, Lee Roberts, 2006

Experiment	Beam	Measurement	δa _µ /a _µ	Required th. terms
Columbia-Nevis (57)	μ+	g=2.00±0.10		g=2
Columbia-Nevis (59)	μ+	0.001 13(+16)(-12)	12.4%	α/π
CERN 1 (61)	μ+	0.001 145(22)	1.9%	α/π
CERN 1 (62)	μ+	0.001 162(5)	0.43%	$(\alpha/\pi)^2$
CERN 2 (68)	μ+	0.001 166 16(31)	265 ppm	$(\alpha/\pi)^3$
CERN 3 (75)	μ^{\pm}	0.001 165 895(27)	23 ppm	$(\alpha/\pi)^3$ + had
CERN 3 (79)	μ^{\pm}	0.001 165 911(11)	7.3 ppm	$(\alpha/\pi)^3$ + had
BNL E821 (00)	μ^+	0.001 165 919 1(59)	5 ppm	$(\alpha/\pi)^3$ + had
BNL E821 (01)	μ+	0.001 165 920 2(16)	1.3 ppm	$(\alpha/\pi)^4$ + had + weak
BNL E821 (02)	μ+	0.001 165 920 3(8)	0.7 ppm	$(\alpha/\pi)^4$ + had + weak + ?
BNL E821 (04)	μ	0.001 165 921 4(8)(3)	0.7 ppm	$(\alpha/\pi)^4$ + had + weak + ?

→ Current world average: $a_{\mu}^{exp}=11659208.9\pm6.3\times10^{-10}$

Dominated by by BNL-E821: PRD73, 072003 (2006)

SM Predictions: $a_{\mu}^{\text{SM}} = a_{\mu}^{\text{QED}} + a_{\mu}^{\text{had}} + a_{\mu}^{\text{Weak}}$

$$a_{\mu}^{\text{had}} = a_{\mu}^{\text{had,LO}} + a_{\mu}^{\text{had,HO}} + a_{\mu}^{\text{had,LBL}}$$

Leading-Order Higher-Order Light-By-Light

Hadronic (q & g) loop contributions cannot be calculated from 1st principles
 Use low energy e⁺e⁻ data to calculate the dominant LO contributions:

$$R(s) = \frac{\sigma(e^+e^- \rightarrow \text{hadrons})}{\sigma(e^+e^- \rightarrow \mu^+\mu^-)}$$

- Data driven calculation, its precision depends thus on the input data!
- The QED kernel K(s) has such an s dependence that low energy data contribute most

Brodsky, de Rafael, 1968

Low energy eter annihilation data

Channel $\pi^0 \gamma$ $\eta \gamma$ $\pi^+\pi^ \pi^{+}\pi^{-}\pi^{0}$ $2\pi^{+}2\pi^{-}$ $\pi^{+}\pi^{-}2\pi^{0}$ $2\pi^+ 2\pi^- \pi^0$ (η excl.) $\pi^+\pi^-3\pi^0$ (η excl., from isospin) $3\pi^{+}3\pi^{-}$ $2\pi^+ 2\pi^- 2\pi^0$ (η excl.) $\pi^+\pi^-4\pi^0$ (η excl., from isospin) $\eta \pi^+ \pi^ \eta\omega$ $\eta 2\pi^{+}2\pi^{-}$ $\eta \pi^+ \pi^- 2 \pi^0$ (estimated) $\omega \pi^0 \ (\omega \to \pi^0 \gamma)$ $\omega \pi^+ \pi^-, \omega 2 \pi^0 \ (\omega \to \pi^0 \gamma)$ ω (non- $3\pi, \pi\gamma, \eta\gamma$) $K^+K^ K_{S}^{0}K_{L}^{0}$ $\phi (\text{non-}K\overline{K}, 3\pi, \pi\gamma, \eta\gamma)$ $K\overline{K}\pi$ (partly from isospin) $K\overline{K}2\pi$ (partly from isospin) $K\overline{K}3\pi$ (partly from isospin) $\phi \eta$ $\omega K \overline{K} \ (\omega \to \pi^0 \gamma)$ J/ψ (Breit-Wigner integral) $\psi(2S)$ (Breit-Wigner integral) $R_{\rm data}$ [3.7 - 5.0 GeV]

Zhiqing Zhang (zhangzq@lal.in2p3.fr, LAL, Orsay)

Relative Contribution of Input Data vs Energy

Connect τ and e⁺e⁻ Data through CVC - SU(2)

Hadronic physics factorizes in Spectral Functions :

Isospin symmetry connects I=1 e^+e^- cross section to vector τ spectral functions:

fundamental ingredient relating long distance (resonances) to short distance description (QCD)

$$\sigma^{(I=1)}\left[e^+e^- \to \pi^+\pi^-\right] = \frac{4\pi\alpha^2}{s} \upsilon\left[\tau^- \to \pi^-\pi^0 \upsilon_\tau\right]$$

$$v\left[\tau^{-} \rightarrow \pi^{-}\pi^{0}v_{\tau}\right] \propto \frac{\mathsf{BR}\left[\tau^{-} \rightarrow \pi^{-}\pi^{0}v_{\tau}\right]}{\mathsf{BR}\left[\tau^{-} \rightarrow e^{-}\overline{v_{e}}v_{\tau}\right]} \frac{1}{\mathsf{N}_{\pi\pi^{0}}} \frac{d\mathsf{N}_{\pi\pi^{0}}}{ds} \frac{m_{\tau}^{2}}{\left(1-s/m_{\tau}^{2}\right)^{2}\left(1+s/m_{\tau}^{2}\right)}$$

branching fractions mass spectrum kinematic factor (PS)

Zhiqing Zhang (zhangzq@lal.in2p3.fr, LAL, Orsay)

Recent Development

Davier, Hoecker, Malaescu, Zhang, arXiv: 1010.4180

> Use new (precise) e+e- annihilation data e.g. from BABAR, KLOE

- > Develop a new software package HVPTools to
 - perform local average using data from different experiments
 - take into account inter-experiment and inter-channel correlations
- > Perform a comprehensive isospin analysis of small missing channels
- Recompute the continum contributions using pQCD at 4 loops

2π Channel

$\pi^{+}\pi^{-}\pi^{0}$, $2\pi^{+}2\pi^{-}$, $\pi^{+}\pi^{-}2\pi^{0}$ Channels

Other Multi-hadron Channels

Regions below and above DDbar

pQCD calculation in good agreement with the direct measurements in non-resonance regions and are applied down to 1.8GeV $\begin{array}{ll} R_{\rm QCD} & [1.8-3.7 \ {\rm GeV}]_{uds} \\ R_{\rm QCD} & [5.0-9.3 \ {\rm GeV}]_{udsc} \\ R_{\rm QCD} & [9.3-12.0 \ {\rm GeV}]_{udscb} \\ R_{\rm QCD} & [12.0-40.0 \ {\rm GeV}]_{udscb} \\ R_{\rm QCD} & [>40.0 \ {\rm GeV}]_{udscb} \\ R_{\rm QCD} & [>40.0 \ {\rm GeV}]_{t} \end{array}$

New Results on $\alpha(M_z)$ & Constraint on M_H

 $\Delta \alpha_{had}(M_Z) = 274.21 \pm 0.17_{stat} \pm 0.78_{uncor-syst} \pm 0.41_{cor-syst} \pm 0.18\psi \pm 0.52_{QCD} (\times 10^{-4})$ = 274.21 ± 1.04_{total} (×10⁻⁴) $\Rightarrow \Delta \alpha_{had}^{(5)}(M_Z) = 274.9 \pm 1.0 (\times 10^{-4}), \ \alpha^{-1}(M_Z) = 128.962 \pm 0.015$

To be compared with

HMNT (06): $\Delta \alpha_{had}^{(5)}(M_Z) = 276.8 \pm 2.2 (\times 10^{-4}), \alpha^{-1}(M_Z) = 128.937 \pm 0.030$

Reevaluated $(g-2)_{\mu}$

Implications on SUSY of the deviation

Selected Topic Two: HERA, PDF and impact on LHC physics

HERAPDF1.0:

- H1 and ZEUS collaborations, JHEP 1001:109 (2010)

Web link:

- https://www.desy.de/h1zeus/combined_results/index.php

HERA (the World's Unique e[±]p Collider)

HERA I: 1992-2000 HERA-II: 2003-2007 (higher luminosity and longitudinal polarization for H1-ZEUS)

Zhiqing Zhang (zhangzq@lal.in2p3.fr, LAL, Orsay)

$\mathsf{HERA} \rightarrow \mathsf{PDFs} \rightarrow \mathsf{LHC}$

Why PDFs?

Why PDFs?

The g(x) density is the 1st necessity at LHC

Precise PDFs needed to provide reliable predictions at LHC

Zhiqing Zhang (zhangzq@lal.in2p3.fr, LAL, Orsay)

The Dominant SM Processes at HERA

 $Q^2 = -q^2 = -(k-k')^2$: spatial resolution x: Bjorken x $y=Q^2/xs$: inelasticity \sqrt{s} : center of mass energy

 $Q^2 \sim 0$: photoproduction (γp) $Q^2 \gg 0$: electroproduction (DIS) Q^2_{max} >10⁴ GeV² → 1/1000 R_p

The two dominant SM Processes for probing proton structure PDFs are Neutral Current (NC) and Charged Current (CC) interactions

Inclusive Cross Sections -> PDFs

$$\frac{d^2\sigma^{\pm}}{dxdQ^2} \sim Y_+F_2 \mp Y_-xF_3 - y^2F_L \qquad \text{with} \quad Y_{\pm} = 1 \pm (1-y)^2$$
Structure function terms
NC (LO):

$$F_{2} \sim x \left(U + \overline{U} + D + \overline{D} \right) \qquad U = u + c$$

$$xF_{3} \sim x \left(U - \overline{U} + D - \overline{D} \right) \qquad D = d + s + b$$

$$F_{L} = 0$$

$$F_2^+ \sim x \left(\overline{U} + D\right), \qquad F_2^- \sim x \left(U + \overline{D}\right)$$
$$xF_3^+ \sim x \left(D - \overline{U}\right), \qquad xF_3^- \sim x \left(U - \overline{D}\right)$$
$$F_L = 0$$

NC is quark flavor blind But larger cross sections provide better precision

CC is quark flavor sensitive But has smaller cross sections

Impact of Earlier HERA-1 Data?

The PDFs $xf(x,Q^2)$ at low $x((10^{-2}))$ before HERA were largely unknown It is the HERA data which allow PDFs be constrained for x down to 10^{-4}

Combined H1 and ZEUS HERA-1 Data

HERA-1 versus HERA-2

H1 and ZEUS

HERA-2 data are still preliminary and ZEUS e- data still to be added Nevertheless the precision of the new combination at high x improved

 $\sigma^{^{\pm}}_{r,NC}(x,Q^2)$

HERAPDF1.0 & HERAPDF1.5

HERAPDF based on HERA data only is being obtained with steadily improving precision

HERAPDF1.0 versus Other Global PDFs

G.Watt, PDF4LHC, March 2010

PDFs differences:

- Input data (HERA only vs. including other data)
- PDF parameterization forms or not
- NLO or NNLO, $\alpha_{\rm s}$ value (fixed or fitted)
- Error treatments
- Heavy quark treatment etc

- →W (Z) cross sections:
 - constrain PDFS
- provide alternative lumi determination

How to Improve Further the g(x) at HERA?

F_L Measurement at HERA

H1 and ZEUS

The measurement will be improved & extended in kinematic range Final F_L can bring further constraint on g(x) at low x

HERA Charm Structure Function F₂^{CC}

The combined charm SF sensitive to charm mass It's better described by NNLO than NLO

When the charm data included in the fit, the resulting PDFs are compatible with HERAPDF1.0

The Importance of Heavy Quark PDFs

Relevance of the PDFs for the Higgs Search

The PDFs uncertainties propagate in to the SM Higgs cross section Thus affect the limit setting

Summary

Low energy precision experiments complementary to high energy machines provide inputs for SM tests & new physics searches and guidelines for Searches at the LHC

- * $\alpha(M_Z)$ shift the M_H constraint up by 12GeV
- * muon g-2: prediction-measurement @ \sim 3.6 σ

[The g-2 Fermilab proposal [P-989] aims for an improvement of

a factor 4 down to 0.14ppm]

HERA, stopped data taking after 15 years of successful running in 2007, is still providing the dominant input for PDFs with steadily improving precision

→ Profound impact on LHC physics programme

[Final HERA-2 data and HERAPDF2.0 will be ready soon]

Overview of a g-2 Experiment

Fermilab g-2 experiment proposal P989

arXiv:1001.2898

Effective proton bunch fill rate: x4 (from 4.4Hz to 18Hz) Stored muon to pion ratio: x 5-10 Measurement precision: ~4 (from 0.54ppm to 0.14ppm)

SM Predictions:
$$a_{\mu}^{\text{SM}} = a_{\mu}^{\text{QED}} + a_{\mu}^{\text{had}} + a_{\mu}^{\text{Weak}}$$

 $a_{\mu}^{\text{had}} = a_{\mu}^{\text{had},\text{LO}} + a_{\mu}^{\text{had},\text{HO}} + a_{\mu}^{\text{had},\text{LBL}}$ Leading-Order Higher-Order Light-By-Light
 $a_{\mu}^{\text{had},\text{LO}} \sim (700 \pm 5) \times 10^{-10}$
 \Rightarrow dominant uncertainty
(both e'e' and τ based)
 $a_{\mu}^{\text{had},\text{HO}} = (-9.8 \pm 0.1) \times 10^{-10}$
 $a_{\mu}^{\text{had},\text{LBL}} \sim (10.5 \pm 2.6) \times 10^{-10}$
 $\Rightarrow 2^{\text{rd}}$ leading uncertainty

Isospin Su(2) Breaking Corrections

Corrections for SU(2) breaking applied to τ data for dominant $\pi^-\pi^+$ contribution:

- Electroweak radiative corrections:
 - dominant contribution from short distance correction $S_{\rm EW}$
 - subleading corrections (small)
 - long distance radiative correction $G_{EM}(s)$
- Charged/neutral mass splitting:
 - $m_{\pi^-} \neq m_{\pi^0}$ leads to phase space (cross sec.) and width (FF) corrections
 - ▶ $\rho \omega$ mixing (EM $\omega \rightarrow \pi^- \pi^+$ decay) corrected using FF model
 - $m_{\rho} \neq m_{\rho 0}$ and $\Gamma_{\rho} \neq \Gamma_{\rho 0}$

Flores-Baez-Lopez Castro' 08 Davier et al.'09

- Electromagnetic decays: $\rho \rightarrow \pi \pi \gamma$, $\rho \rightarrow \pi \gamma$, $\rho \rightarrow \eta \gamma$, $\rho \rightarrow l^+/^-$
- Quark mass difference $m_u \neq m_d$ (negligible)

Marciano-Sirlin' 88

Braaten-Li' 90

Cirigliano-Ecker-Neufeld' 02 Lopez Castro et al.' 06

Alemany-Davier-Höcker' 97, Czyż-Kühn' 01

Gfitter

Parameter	Incut value	Free	Results from global EW fits:		Complete fit w/o
1 arameter	input value	in fit	Standard fit	Complete fit	exp. input in line
M_Z [GeV]	91.1875 ± 0.0021	yes	91.1874 ± 0.0021	91.1877 ± 0.0021	$91.1981 \substack{+0.0171 \\ -0.0162}$
Γ_Z [GeV]	2.4952 ± 0.0023	-	$2.4959 \substack{+0.0016 \\ -0.0014}$	2.4956 ± 0.0015	$2.4944 \substack{+0.0025 \\ -0.0010}$
σ_{had}^0 [nb]	41.540 ± 0.037	_	41.478 ± 0.014	41.481 ± 0.002	41.469 ± 0.015
R^0_ℓ	20.767 ± 0.025	_	20.742 ± 0.018	$20.742 \substack{+0.017 \\ -0.018}$	20.717 ± 0.027
$A_{ m FB}^{0,\ell}$	0.0171 ± 0.0010	_	0.01638 ± 0.0002	0.01624 ± 0.0002	$0.01614 \substack{+0.0002 \\ -0.0001}$
A_{ℓ} (*)	0.1499 ± 0.0018	_	0.1478 ± 0.0010	0.1472 ± 0.0009	_
A_c	0.670 ± 0.027	_	$0.6682 {}^{+0.00045}_{-0.00044}$	$0.6680 \substack{+ 0.00038 \\ - 0.00039}$	$0.6679^{+0.00047}_{-0.00040}$
A_b	0.923 ± 0.020	_	0.93468 ± 0.00009	$0.93463 \substack{+0.00006\\-0.00007}$	$0.93463 \substack{+0.00006\\-0.00007}$
$A_{ m FB}^{0,c}$	0.0707 ± 0.0035	_	$0.0741^{+0.0006}_{-0.0005}$	0.0737 ± 0.0005	$0.0738^{+0.0004}_{-0.0005}$
$A_{ m FB}^{0,b}$	0.0992 ± 0.0016	_	0.1036 ± 0.0007	0.1031 ± 0.0006	$0.1037 \substack{+0.0004 \\ -0.0007}$
R_c^0	0.1721 ± 0.0030	_	0.17225 ± 0.00006	0.17225 ± 0.00006	0.17226 ± 0.00006
R_b^0	0.21629 ± 0.00066	_	$0.21577 \substack{+0.00005 \\ -0.00008}$	$0.21577 \substack{+0.00005 \\ -0.00008}$	$0.21577 \substack{+0.00004 \\ -0.00008}$
$\sin^2 \theta_{\rm eff}^{\ell}(Q_{\rm FB})$	0.2324 ± 0.0012	_	0.23143 ± 0.00013	$0.23150 \substack{+0.00010 \\ -0.00009}$	$0.23152 \substack{+0.00009 \\ -0.00010}$
M_H [GeV] $^{(\circ)}$	Likelihood ratios	yes	$84.2^{+30.3[+75.0]}_{-23.3[-41.9]}$	$120.6^{+17.0[+34.3]}_{-5.2[-6.2]}$	$84.2^{+30.3[+75.0]}_{-23.3[-41.9]}$
M_W [GeV]	80.399 ± 0.023	_	$80.384^{+0.014}_{-0.015}$	$80.369^{+0.007}_{-0.009}$	80.353 ^{+0.018} -0.013
Γ_W [GeV]	2.085 ± 0.042	-	2.092 ± 0.001	2.091 ± 0.001	$2.092 \substack{+0.000 \\ -0.001}$
\overline{m}_{c} [GeV]	$1.27^{+0.07}_{-0.11}$	yes	$1.27\substack{+0.07\\-0.11}$	$1.27 \substack{+0.07 \\ -0.11}$	_
\overline{m}_b [GeV]	$4.20 \substack{+0.17 \\ -0.07}$	yes	$4.20 \substack{+0.16 \\ -0.07}$	$4.20 \substack{+0.16 \\ -0.07}$	_
m_t [GeV]	173.3 ± 1.1	yes	173.4 ± 1.1	173.7 ± 1.0	$178.5 \substack{+9.6 \\ -3.7}$
$\Delta \alpha^{(5)}_{\rm had}(M_Z^2)^{(\dagger \Delta)}$	2769 ± 22	yes	2772 ± 22	2764^{+21}_{-22}	2729^{+39}_{-55}
$\alpha_s(M_Z^2)$	-	yes	$0.1192^{+0.0028}_{-0.0027}$	0.1193 ± 0.0028	0.1193 ± 0.0028
$\delta_{ m th} M_W$ [MeV]	$[-4,4]_{theo}$	yes	4	4	_
$\delta_{\rm th} \sin^2 \theta_{\rm eff}^{\ell}$ (†)	$[-4.7, 4.7]_{theo}$	yes	4.7	-0.3	_
$\delta_{\mathrm{th}} \rho_Z^{f}$ (†)	$[-2,2]_{\rm theo}$	yes	2	2	_
$\delta_{ ext{th}}\kappa_Z^f$ (†)	$[-2,2]_{theo}$	yes	2	2	_
b 10 2010	31 · · · 31	()			

Nanning, Nov. 15-19, 2010

Zhiqing Zhang (zhangzq@lal.in2p3.fr, LAL, Orsay)