Neutrino Experiments: Status and Perspectives

Weili Zhong 钟玮丽 Lawrence Berkeley National Laboratory

LHEP2010 – Nanning, Guangxi

11-18-2010

Introduction

Neutrino mixing

 θ_{13} and reactor neutrino experiments θ_{13} , δ_{cp} , mass hierarchy and accelerator

neutrino experiments

LSND and sterile neutrino

Solar neutrino experiments

Cosmogenic neutrino and neutrino telescope

Neutrino mass

Beta decay experiments

 $0\nu\beta\beta$ decay experiments

LHC may help

Neutrino Mixing

Unknown: θ_{13} , δ_{cp} , sign(Δm_{32}^2)

Last Unknown Mixing Angle θ_{13}

Measure $sin^2 2\theta_{13}$ to a sensitivity of 0.01

θ_{13} in Reactor Neutrino Experiment

$$P(\overline{v}_e \to \overline{v}_e) \approx 1 - \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E}\right) - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \left(\frac{\Delta m_{21}^2 L}{4E}\right)$$

- Low energy \overline{v}_e : 1.8MeV to 10MeV
- Clean measurement of θ_{13} : matter effect negligible, no coupling from δ_{cp}
- Inverse beta decay: cross section is well known
- Near/Far: exact 1/r² extrapolation
- No neutral current background
- Gd-loaded liquid scintillator improves background suppression.

Daya Bay

Powerful reactors (increase statistics)

- 4 cores 11.6 GW
- 6 cores 17.4 GW from 2011 simple number:
- typical reactor 3GWth
- 6×10²⁰ v/s

Optimize baseline to place detector

Go deeper underground (suppress background)

Near/Far relative measurement (reduce systematical uncertainties)

- AD are placed in water pool
 - Surrounded by 2.5m water
 - Shield γ and neutron
- Multiple muon tagging detectors:
 - Water pool serves as Cherenkov detector to tag muon
 - Water pool is optically separated into inner/outer regions
 - Two Layers of Cherenkov detectors to do cross check
 - RPC at the top of water pool serves as muon tracker
 - Combined efficiency
 - > (99.5 ± 0.25) %

Sensitivity and Schedule

Expected signal and background rates per antineutrino detector

	Daya Bay Near	Ling Ao Near	Far Hall
Antineutrino Signal (events/day)	840	740	90
Overburden (m.w.e.)	260	300	870
Accidental Background/signal (%)	<0.2	<0.2	<0.2
Fast neutron Background/signal (%)	0.1	0.1	0.1
⁸ He/ ⁹ Li Background/signal (%)	0.3	0.2	0.2

Systematic and statistical uncertainty

Source	Uncertainty
Reactor	0.13%
Detector(per module)	0.38%
Statistics	0.2%

Experimental Hall	Physics Ready
Daya Bay Hall	Fall 2011
Ling Ao Hall	Spring 2012
Far Hall	Fall 2012

Under construction

Thermal Power (GW)	N 1222	Near		Far		2	
	Power (GW)	(Tons)	Distance (m)	Depth (m.w.e.)	Distance (m)	Depth (m.w.e.)	o _{system} (%)
Double Chooz	8.5	10 / 10	400	115	1050	300	0.6
RENO	17.3	16 / 16	290	120	1380	450	0.5
Daya Bay	17.4	40, 40 / 80	363 &481	260 &300	1985 &1613	870	0.38

θ_{13} in Accelerator Neutrino Experiment

- Appearance probability of $v_e^{}$ from $v_\mu^{}$ depends on values of $\theta_{13}^{},~\delta_{cp}^{}$ and mass hierarchy.

$$P_{e\mu} \simeq \sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \frac{\sin^{2} [(1-\hat{A})\Delta_{31}]}{(1-\hat{A})^{2}}$$

$$\pm \alpha \sin 2\theta_{13} \sin \delta_{CP} \sin 2\theta_{12} \sin 2\theta_{23}$$

$$\times \sin(\Delta_{31}) \frac{\sin(A\Delta_{31})}{\hat{A}} \frac{\sin[(1-\hat{A})\Delta_{31}]}{(1-\hat{A})}$$

$$+ \alpha \sin 2\theta_{13} \cos \delta_{CP} \sin 2\theta_{12} \sin 2\theta_{23}$$

$$\times \cos(\Delta_{31}) \frac{\sin(A\Delta_{31})}{\hat{A}} \frac{\sin[(1-\hat{A})\Delta_{31}]}{(1-\hat{A})}$$

$$+ \alpha^{2} \cos^{2} \theta_{23} \sin^{2} 2\theta_{12} \frac{\sin^{2}(\hat{A}\Delta_{31})}{\hat{A}^{2}}. (31)$$

$$\hat{A} = \frac{A_{\rm CC}}{\Delta m^2} = \pm \frac{2\sqrt{2}E\,G_F\,n_e}{\Delta m^2} \,. \qquad \alpha \equiv \Delta m_{21}^2/\Delta m_{31}^2 \simeq 0.03$$

Neutrino beam from hadron accelerator

- KEK / NuMI / BooNE / CERN / J-PARC neutrino beams use same basic principles
- Typically fluxes are composed of:
 - ~90+% ν_{μ} from focused $\pi^{\scriptscriptstyle +}$ and $K^{\scriptscriptstyle +}$ decays
 - ~5% $\overline{\nu}_{\mu}$ from incompletely defocused π^{-} and K⁻ decays
 - ~1% v_e+ \overline{v}_e from μ and K decays

- NuMI beam line at Fermi Lab.
- L/E ~ 500Km/ GeV, Δm^2_{atm}
- Two detectors

MINOS

- Tracking sampling calorimeters
 - Steel absorber (2.5cm thick)
 - Scintillator strip (4.1 cm wide)
- Magnetized

III.

Minn.

Enclosure

Main Injecto

- Muon energy and distinguish μ^+, μ^-
 - **Functionally** equivalent Segmentation Material Mean B field

Near Detector km from Source

MINOS Event Topologies

2.0 $\Delta m^2 > 0$ 1.5 **MINOS Best Fit** 68% CL $δ_{CP}(π)$ 90% CL 1.0 ***** CHOOZ 90% CL 2sin²θ₂₃=1 for CHOOZ 0.5 0.0 0.2 0.3 0.1 0.4 $2sin^2(2\theta_{13})sin^2\theta_{23}$ 2.0 $\Delta m^2 < 0$ 1.5 MINOS δ_{CP} (π) 1.0 7.01×10²⁰ POT 0.5 0.0 0.2 0.3 0.1 0.4 $2\sin^2(2\theta_{13})\sin^2\theta_{23}$

Phys. Rev. D 82, 051102

T2K

- High intensity neutrino beam from J-PARC
- Narrow band beam tuned at oscillation maximum
 - 2.5deg off-axis, peak ~600MeV
 - Quasi Elastic CC dominate: v₁ + n -> l⁻ + p
- Near detector @280m
 - On-axis detector "INGRID"
 - Intensity and direction (profile)
 - Off-axis (toward SuperK direction)
 - Absolute flux/spectrum/v_e
- Far detector: SuperK, 50KT @295km
- Schedule:
 - data taking started in Jan. 2010, beam power ~50KW
 - After Nov. 2010, from ~100KW towards 0.75MW
- Goal: Accumulate 0.75KW×5×10⁷sec
 - v_e appearance: $sin^2 2\theta_{13} \sim 0.008$ (90%CL), 0.018(3 σ)
 - Precise measurement of v_{μ} disappearance.

NOVA

- High intensity neutrino beam from Fermi Lab NuMI beam: upgrade to 0.7MW in Fall, 2011.
- Narrow band beam at oscillation maximum
 - 14mrad, peak ~2GeV
 - Near detector: ~12m off-axis, Far detector:~12km off-axis
- Near and far detector: tracking liquid scintillator calorimeters
- Near detector: 23t, ~1km
- Far detector: 15kt, 810km
 - Sensitive to neutrino mass hierarchy
- Goal: measure $\sin^2 2\theta_{13}$ and θ_{23}
- Schedule: data taking in 2013, and first run will last six years.

Combination of T2K and NOVA: Mass Hierarchy and δ_{cp}

- NOVA will run in neutrino mode and anti-neutrino mode to explore mass hierarchy.
- Combine T2K and NOVA data to reduce degeneracy.

Superbeam Long Baseline Neutrino Experiments

• Multi MW super beam, longer baseline, giant detector

	current	plan	under discussion	
	~0.05MW	0.75 MW	1.7MW	
J-PARC/KEK	J-PARC/KEK T2K (θ ₁₃)		JPARC-to-somewhere (CPV, hierarchy, θ_{13})	
	22.5ktor	n W.C. (SK)	540kton W.C. or 100kton LArTPC	
	~0.3MW	0.7 MW	~2MW (Project-X)	
FNAL	NuMI/MINOS (v _μ disapp.)	NOvA (θ13, hierarchy)	FNAL-to-DUSEL (CPV, hierarchy, θ13)	
		14kton Liquid Scint.	~300kton W.C. and/or ~50kton LArTPC	
	~0.3MW	0.4MW	2MW(HP-PS2) ~ 4MW(HP-SPL)	
CERN	CNGS/OPERA (ν _τ app.)		130~2300km site (CPV, hierarchy, θ ₁₃)	
			~500kton W.C. or ~100kton LArTPC or ~50kton LiquidScint.	

Sensitivity to CPV and Hierarchy (FNAL-DUSEL)

- 300Kt Water Cherenkov detector
- 700KW, 120GeV, 2×10⁷ s/yr, 8+8 years

arXiv: 0705.4396

Neutrino Factory and Beta Beam

- Neutrino factory: produce neutrinos by muon decay in the straight section of storage ring
 - Discovery potential: close to full parameters space and down to very small $sin^2 2\theta_{13}$
 - IDS-NF: R&D for proton driver, muon cooling, muon acceleration, detector

- Beta beam: neutrinos by beta decay in the straight section of storage ring.
 - Flavor-clean electron neutrino beam (EURISOL etc.)

LSND Anomaly

- LSND: |Δm²|~1eV² (L~30m, E~30MeV) inconsistent with solar and atmospheric results. Sterile neutrino?
- MiniBoone was designed to test LSND signal.
 - Same L/E (L~500m, E~500MeV).
 - Different systematic, energy, and event signature.
 - E<475MeV: electron-like events excess.
 - MiniBoone is running to improve statistics.
- MicroBoone at FNAL is following on.
- MINOS NC event rate is not diminished (f_s<0.22 (NH, 90%CL)), disfavored sterile neutrino appearance.
- Solar neutrino experiments: may detect sterile neutrino in pp-chain after θ_{13} .

Solar Neutrino

Solar Neutrino Experiments

- Further study of matter-enhanced oscillation
 - Low E neutrino: vacuum-matter transition
 - Spectrum distortion: matter effect in the sun
 - Day/night asymmetry: matter effect in the earth
- Improvement in precision of mixing parameters
 - Solar (+KamLAND) supply constrain on θ_{13}
 - More precise measurement on solar parameters.
- Further information on Solar Models

Borexino Detected ⁷Be(vacuum) and ⁸B(mass) in Liquid Scintillator Detector same detector Stainless Steel Sphere External water tank و^ھ 0.8 Nylon Outer Vessel Water P., for LMA Ropes Nylon Inner Vessel Survival probability for v_{e} , Be: Borexino Fiducial volume 0.7 B: Borexino, (> 3 MeV) B: Borexino (> 5 MeV) Internal B: SNO (> 4 MeV) **PMTs** 0.6 AUTHORIDA ALL ALL STREET annun anter annun anter op: all solar v experiments Buffer 0.5 Scintillator Steel plates for extra $+e^{-} \rightarrow v + e^{-}$ Muon 0.4 shielding PMTs 100000000 ACCORD DATE: NO. 0.3 pep 0.2 10⁻¹ 10 E. [MeV] arXiv:0808.2868v3

- 100t (fiducial volume) liquid scintilaltor Detector for sub-MeV solar neutrinos
- Low threshold: 200KeV
- Ultralow background: a few tens cpd/100t, it's a few 10⁻⁹Bg/kg
 - 3800m (mwe) depth in LNGS, and ultra-clean liquid scintillator
- Day/night asymmetry from ⁷Be
 - A_{ND}=2(N-D)/(N+D)=0.007±0.073(stat.) No obvious day/night asymmetry.
- pp-chain flux in SSM only has 1% uncertainty: improve the precision of solar mixing parameters. Flux measurement of pep, CNO, pp....

High Energy Neutrinos

• Production: p+p or p+γ gives pions which give neutrinos

Neutrino Flux

One 10¹⁹eV particle per km³ per year per steradian.

Neutrino Telescope

IceCube

Final Configuration:

- 5160 DOMs / 86 strings
- O(100) neutrinos/day O(10⁸⁾ muons/day
- threshold: ~10 GeV
- angular resolution: 0.4-1 deg

Currently deployed:

4790 DOMs/ 79 strings

Data samples:

Flavor Identification

Flavor ratios can give additional information on constrain to $sin^2 2\theta_{13}$ and δ_{cp}

- v_{μ} : produce long μ track
 - Angular resolution ~1deg
- v_e (CC), v_x (NC): shower
 - Point source to cascade
 - Good energy resolution
- v_{τ} : "double bang event": two showers
 - τ production and decay
 - Other topologies

IC40: all-sky scan, significance map

• No significant evidence of neutrino source.

E. Resconi, Neutrino2010

Neutrino Mass

Mass Measurement

Beta Decay

- Model independent
 - Majorana or Dirac, CP phase
 - Nuclear matrix element
- Squared neutrino mass (absolute)
- Current discovery potential: degeneracy

Ονββ Decay

- Model dependent
- Majorana neutrino
- Effective neutrino mass
- Current discovery potential: IH

Beta Decay

Model-Independent Measurement: Kinematics and energy conservation

$$\frac{\mathrm{d}\Gamma_i}{\mathrm{d}E} = C \cdot p \cdot (E + m_e) \cdot (E_0 - E) \cdot \sqrt{(E_0 - E)^2 - m_i^2} F(E,Z) \cdot \theta(E_0 - E - m_i)$$

$$(v - \mathrm{mass})^2$$

If $m_v \neq 0$: shift the endpoint and change the shape

Measure the region close to endpoint:

- Low endpoint beta source
- ✓ High count rate
- ✓ High energy resolution
- Extremely low background

KATRIN

Tritium source, endpoint 18.6KeV, $t_{1/2}$ 12.3y, high activity $10^{11}\beta/s$

Schedule: Start main spectrometer test in 2011, Commissioning of completed setup in 2012.

KATRIN Sensitivity

Discovery potential: $m_v = 0.35eV (5\sigma)$

Sensitivity: m_v < 0.2eV (90% C.L.)

 $\Delta m_{tot}^2 = (\Delta m_{stat}^4 + \Delta m_{stat}^4)^{1/2}$ $\approx 0.025 \text{ eV}^2/c^4$

Limit of KATRIN: Source and detector are separate

MARE experiment (¹⁸⁷Re, endpoint 2.47KeV, t_{1/2} 4.32×10¹⁰y): Use bolometer technology, source is detector. MARE2: ~0.2eV

Neutrinoless Double Beta Decay

- $0v\beta\beta$: ΔL≠0, lepton number violation. ٠
- Standard interpretation: light, massive • majorana neutrinos ($v = \overline{v}$)
- Other mechanisms: negligible... •
- Even-even nucleus of larger $Q_{\beta\beta}$ •

$$(T_{1/2}^{0\nu})^{-1} = G_{0\nu}(Q_{\beta\beta}, Z) |M_{0\nu}|^2 \langle m_{\beta\beta} \rangle^2$$

Neutrinoless Double Beta Decay

Requirement:

- Source (is detector) mass: ~100kg ~1ton
- Extremely low Background: a few cts/keV•t•y
 - Go deep underground, material purification...
- Good energy resolution
- Nuclear matrix element uncertainty
 - need several experiments with different nuclei

0vββ Decay Experiments

Name	Isotope	Technique	Mass	Mass Location Sensitivity		Time
CUORICINO	Te-130	Bolometer	11kg	LNGS	0.40eV	2003 - 2008
CUORE	Te-130	Bolometer	200kg	LNGS	0.22eV	2013 -
COBRA	Cd-116	Semiconductor	183kg	LNGS		
GERDA I/II	Ge-76	Semiconductor	18/40kg	LNGS	75-129meV	2009 (comiss.)
Majorana	Ge-76	Semiconductor	30kg	DUSEL	20-41meV	2011 -
NEMO-3	Mo-100	Tracking-calo	7kg	LSM	0.3-0.9eV	till 2010
SuperNEMO	Se-82	Tracking-calo	100+kg	LSM	40-110meV	2013 -
SNO+	Nd-150	Scintillator	44kg	SNOlab	150meV	2012 -
KamLAND-Zen	Xe-136	Scintillator	400kg	Kamioka	60meV	2011 -
CANDLES III	Ca-48	Scintillator	305kg	Kamioka		
EXO-200	Xe-136	Liquid TPC	200kg	WIPP	109-135meV	2009 (comiss.)
EXO	Xe-136	Gas TPC	1-10ton	SNOlab		
completed construction or preparation R&D						

And some other experiments...

Hints from LHC

- Why $m_v << m_{q,l}$? \rightarrow seesaw mechanism
- Collider signatures: ΔL=2 like-sign dilepton events via TeV seesaw

 $W^{*\pm} \rightarrow l^{\pm}_{\alpha} N \rightarrow l^{\pm}_{\alpha} l^{\pm}_{\beta} j j$ pp

 $l^{\pm}_{\alpha}l^{\pm}_{\beta}$

Conclusions

- Neutrinos are massive and mix.
- Experiment tests continue the quest for the nature of neutrino:
 - How small is θ_{13} ?
 - CP violation?
 - Mass hierarchy?
 - Absolute mass scale?
 - Dirac or Majorana particle?
 - Is θ_{23} maximal?
 - LSND? Sterile neutrinos?
- We have a lot to look forward to in the future.

WE ARE ON THE WAY !