

Searches for Supersymmetry at CMS

Robert Schöfbeck on behalf of the CMS collaboration

LHEP 2010, Nanning, November 15th-19th, 2010

Pixels
Tracker
ECAL
HCAL
MUON Dets.
Superconducting Solenoid

Total weight : 12500 t Overall diameter : 15 m Overall length : 21.6 m Magnetic field : 4 Tesla

http://cms.cern.ch

Early SUSY signatures

Missing E_T and jets at the LHC: SUSY

- > at the LHC colored $\tilde{g}\tilde{g}$, $\tilde{g}\tilde{q}$ or $\tilde{q}\tilde{q}$ roduction will be dominant
- followed by cascade decays involving jets and (di-)leptons, photons, ...
- Under moderate assumptions
 (e.g. R-parity) there is a stable LSP
- > If it is weakly if \tilde{z}_{1}^{0} cting like, e.g. the i
 - will escape detection producing
 large amounts of missing energy
 - > would be a good dark matter candidate

Signature:

iets + ME | + X Cosmology + LHC

Exciting Motivation + Right Place&Timing

MET Results from 7TeV

work-flow of MET corrections

track based MET corrections

new physics could be close to the standard model in MET \rightarrow accurate meas. difficulties in calorimetry MET (non-linearity, material budget, high magnetic field)

> especially at low p_T : 10 GeV pion ~ 6 GeV response

Muon corrections (part of standard calo-MET corrections)

- identify muons
- subtract expected deposit for a MIP (~2GeV)
- add Muon-pt

 $\begin{aligned} & \mathcal{K}_{T}^{\mu} = \mathcal{K}_{T}^{\text{calo}} + \delta \mathcal{K}_{T}^{\mu}, \\ & = -\sum_{\text{towers}} \vec{E}_{T} - \sum_{\substack{\text{good}\\\text{muons}}} \vec{p}_{T} + \sum_{\substack{\text{good}\\\text{muons}}} \vec{E}_{T}^{\text{MIP}} \end{aligned}$

$\left(\right)$		k based correction		
	E_T^{tc}	=	$\mathbf{E}_T^{\mu} + \delta \mathbf{E}_T^{\mathrm{tc}},$	
		=	$E_T^{\mu} + \sum \langle \vec{E}_T \rangle - \sum$	\vec{p}_T
			good good	
			tracks tracks	

track corrected MET (tcMET)

> same spirit: at low pt remove calo-response making use of

the a calorimetry response-function <E_T> determined from simulation

Noise cleaning in MET

Basic strategy:

use unphysical charge sharing between neighboring channels in space and/or depth as well as timing and pulse shape information.

Once a "hit" in an HCAL tower or ECAL crystal is determined to be unphysical, it is excluded from the reconstruction of higher level objects like jets or MET

HBHE veto: RBX fires up to 72 channels; no signal in neighboring RBX

MET performance in CMS

MET in dijet Events

MET resolution

Comparing MET resolutions of different algorithms in Dijet Data y-Axis: σ of Gaussian fit for $E_{T,miss,x,y}$, x-Axis: calibrated pF-sum- E_T Tracker based algorithms improve MET resolution. (Type-II corrected calorimetry MET includes jet-energy scale corrections applied to

jets and to the remaining unclustered energy deposits.)

Towards SUSY

Jet and MET Commissioning at 7 TeV

How do we search for Supersymmetry at CMS?

- We search for inclusive signatures MET + jets + anything (lepton(s), b's, (di-)photons, etc.)
- We do use the benchmarks mainly for motivation by theory, however we aim to avoid theoretical prejudices.
- The most important signatures are

MET + exclusive jets MET + inclusive jets MET + jets + 1 lepton MET + jets + SS di-leptons MET + jets + OS di-leptons MET + jets + trileptons MET + jets + trileptons

For these signatures we develop data-driven background-estimations. At present we do not focus on (immediate) interpretation of an excess, instead are recent efforts to parametrize it (with enganzory shell effective theory).

- In the past years we have tested strategies to suppress and measure SM backgrounds in detail using MC
- Used 11-65 nb⁻¹ of 7 TeV data used for testing some of these methods in the available phase-space (not yet where we expect SUSY signal)
- Although QCD is not expected to be dominant background for some of the channels, it has poorly known (large!) cross sections, which need to be measured from data:
 - Suppressing QCD using topological observables
 - Predicting QCD contributions to MET
 - data-driven techniques to measure QCD backgrounds for lepton(s), photon(s) + Jets in MET

benchmarking SUSY searches

guarantee the latter

15

Jet and MET Commissioning at 7 TeV

SUSY benchmarks in CMS

Jet and MET Commissioning at 7 TeV

prospect for inclusive jets + MET

95% CL exclusion-contours of the all-hadronic searches (≥3j + MET + lep-veto) 50% uncertainty assumed on SM-Bkg. Surpass Tevatron at ~ 50pb⁻¹ no optimization of selection cuts (Tevatron: different tanß, more data, LEP: s-lepton and charging searches)

same sign dilepton search

Jet and MET Commissioning at 7 TeV

suppressing QCD with α_τ

QCD

SUSY

▶LSP

- $\boldsymbol{\alpha}_{T}$ uses jet- p_{T} s and angular informationbut no MET $\boldsymbol{\alpha}_{T} \equiv \frac{p_{T2}}{M_{T}}$ where \boldsymbol{M}_{T} is the transversal mass ofa dijet-system and $p_{T,2}$ its sub-leadingtransversal momentum.
- In well-measured dijet events:

 $\alpha_{T, \text{ di-jet}} < 0.5$

- Multi-Jet- generalization:
- Partition the multi-jet system into

pseudo-jets by minimizing ΔH_T

 $\alpha_T = \frac{1}{2} \frac{1}{\sqrt{H_T^2 - (MHT)^2}}.$ $MHT \equiv |\sum_{j \in ts \ j} - \vec{p}_{Tj}|$ $H_T = \sum_{j \in ts \ j} p_{Tj}$

MC studies indicate powerful QCD rejection for a tightened cut

 $\alpha_{T, \text{ multi-jet}} > 0.55$

Study α_T as a function of the scalar sum of jet-p_Ts (i.e. **HT**)

 $\Delta H_T = p_{T \text{pseudojet } 1} - p_{T \text{pseudojet } 2}$

 $\tilde{\chi}_1^0$

_SP

 $\tilde{g} \mathbf{O}$

suppressing QCD with α_{T}

suppressing QCD with α_{T}

Jet and MET Commissioning at 7 Tetudy as a function of H

validating α_T on Data

Fraction of events with $\alpha_T > 0.55$ in dijet and multi-jet bin

Blue: jet-triggered (p_T >15 GeV uncorrected) shows exponential dependence Artificial degradation:

- Red: Emulate jet-loss with a removal probability ~ 5-10 times the expectation
- Green: γ-triggered, dominated by misidentified jets

Violet: 10% of the jets are re-smeared with a one-sided Gaussian of $\sigma = 0.5 p_T$ The failure fraction is a consistently decreasing function of H_T.

he wood to obtain a detand MET Commissioning at 7 JeV and Lower LL him

validating α_{T} on Data

Consider the fraction of events with $\alpha_T > 0.55$ as a function of $|\eta|$ of the leading-jet

SUSY is produced more centrally than SM-backgrounds (right)

- Aim to use this sideband in $|\eta|$ of the leading jet to estimate remaining background.
- The fraction of QCD events failing $\alpha_T < 0.55$ is uniform in $|\eta|$ (black), even when introducing fake MET by artificially removing jets (blue).

Estimating artificial MET on Data

- Using **MET-templates** obtained from QCD-Events to predict **fake-MET** (jet-mismeasurement, noise, instrumental effects, ...)
- > Construct a pool of MET templates using multi-jet QCD events for each (N_J, H_T-bin) pair. Higher H_T leads to a larger tail in MET
- For each signal candidate events, measure N_J and H_T and pick a corresponding template
- Sum up the templates for all signal events to get SM MET = 7 TeV

Closure test of template method

Testing the prediction of the MET-distribution in $\gamma + \ge 3$ jet Events. Kinematical effects are diluted at high N₁.

For **MET > 15 GeV** the predicted (12.5 Events) and the observed number of Events (11) are statistically consistent.

Gravity mediated SUSY breaking

 $\tilde{\chi}_1^0$

In gravity mediated supersymmetry breaking, the lightest Supersymmetric **Particle (**LSP) is the gravitino.

G.

additional $1 \rightarrow 2$ SUSY vertex is the supersymmetrization of gravitational deflection of light

Next to Lightest Supersymmetric Particle

NLSP could be s-tau or the lightest Neutralino, giving rise to distinct collider signatures with little standard mode \gtrsim kground.

In case of a signature.

 χ_1 _SP with short enough life-time, it will give rise to a **di-photon** SM-Bkg. from qq $\rightarrow Z\gamma\gamma$ and qq $\rightarrow W\gamma\gamma$ are negligible.

Estimating MET in 2y Events

Prediction consistent with number of observed events

For MET > 20 GeV: Predicted = 4.2 ± 1.5 Observed = 4 events $\gamma\gamma$ + MET is one of the early search channels remaining backgrounds: W γ with the electron **mis-id as** γ **multi-jet** (direct $\gamma\gamma$) + **fake MET** (dominant)

Prediction from fake-fake sample:

Measure MET distribution in a control sample with 2 fake photons, selected by inverting the isolation requirement. Use number of selected events at MET < 10 GeV to normalize the measured templates (assume no new physics in low MET-region, reweight

Jet and MET Commidisphoton-pay Spectrum)

Isolation fit in Muon channel

QCD contributes to μ + Jets+ MET signature : $p_T(\mu) > 10$ GeV, $|\eta| < 2.1$ mainly due to **heavy-flavor decays** to muons. Left: peak from W $\rightarrow \mu v$, tail from non-prompt Muons Right: control sample used for fitting the relative Isolation to predict bkg. from non-prompt muons (2 parameter shape, low χ^2)

ttbar in the SS-µ-Channel

t-tbar is the dominant background for the same-sign (SS) di-μ signature shown above. One μ comes from the W and the other from b-decays **Estimate TTbar bkg. from bb-bar sample** Employ Tag&Probe method on **bbar**-Events to measure isolation distribution of muons coming from heavy flavor decays. One b-jet is used to tag the μ in the other hemisphere whose isolation properties are studied.

Jet and MET Commissioning at 7 TeV

Probe: Muon

, þ

ttbar in the SS-µ-Channel

Reweight wrt. to jetmultiplicity and lepton- p_T to make the bb-sample a good ttbar-model.

Big differences in jetmultiplicity and lepton- p_T spectrum

Comparison of the isolation template for generator-truth for ttbar (red), QCD-estimate (blue) and from data.

Iso-prediction closes on MC and agrees qualitatively, more statistics needed.

Conclusions

Missing transverse Energy

Very good agreement between data and MC

- > Core and tail of MET well described over many orders of magnitude
- track based MET corrections improve performance
- > Tails will be reduced with new cleaning

Supersymmetry

- Understanding of the SM background is the first step towards BSM searches
- Dedicated methods to suppress the backgrounds and data-driven techniques to measure them from data are in place.
- The first data collected by CMS at 7 TeV allowed us to test some of these methods; data confirms the performance of the methods obtained with MC
- LHC performs very well; as of much more (~ 43 pb⁻¹) data is available → plenty new results soon!

References

"Performance of Methods for Data-Driven Background Estimation in SUSY Searches", CMS Physics Analysis Summary: **SUS-10-001**

"CMS MET Performance in Jet Events from pp Collisions at sqrts= 7 TeV", JME-10-004.

"The CMS physics reach for searches at 7 TeV", CMS-NOTE-2010-008

"SUSY searches with dijet events", CMS Physics Analysis Summary: SUS-08-005

"Search strategy for exclusive multi-jet events from supersymmetry at CMS", CMS Physics Analysis Summary: **SUS-09-001**

"Data-Driven Background Estimates for SUSY Di-Photon Searches", CMS Physics Analysis Summary: **SUS-09-004**

"Performance of Missing Transverse Energy Using Calorimeter and Tracks in CMS" CMS Physics Analysis Summary: **JME-09-006**

"Performance of Track-Corrected Missing ET in CMS" CMS Physics Analysis Summary: **JME-09-010**

