
Cluster Counting in the SCTF

Drift Chamber Simulation
Cluster Counting in the SCTF

Drift Chamber Simulation

Vyacheslav Ivanov

25.11.2021

Drift chamber simulation chain

• The key point for the feasibility of the cluster counting/timing is the
possibility of development of an effective peaks clusterization
algorithm (we are working on it)

Raw (Digitized) Hits
• Channel triggering time
• Integrated amplitudes from both wire ends
• Peaks times/amplitudes (via ad-hoc peak finding algorithm)

• Track 𝑧-coordinate (via charge division and time correlations)
• Track impact parameter (via Maximum Product of Spacings

algorithm https://doi.org/10.1016/j.nima.2015.11.028)

Reconstructed Point Hits
• (𝑥, 𝑦, 𝑧) coordinates of track’s PCA to the wire

Track candidates (= set of reconstructed hits,
supposedly produced by one particle)

• Hit doublets reconstruction

• Chains of doublets reconstruction

• Track following

• Track candidate with estimated track direction at
each hit & left-right ambiguity resolved

• Preliminary fit with Riemann fit (using
Reconstructed Point Hits)

Digitization

Point Hits reconstruction

DC geometry DD4HEP Geant4 DC channel response

Hits reconstruction

• Merged peak times and amplitudes from both wire ends (via
cross-correlation maximization)

• Reconstructed cluster times (need clusterization algorithm)

Track fit

• Final fit with Kalman Filter (using Reconstructed
Hits)

Fitted tracks

Reconstructed Hits

• Simulation of the full stereo drift chamber with cluster counting
and timing possibilities is being developed (done / to be done)

https://doi.org/10.1016/j.nima.2015.11.028

Ionization clusters generation

fit:

• On the spiral stretched between the beginning and the ending point of the GEANT4 hit (G4Step) we generate the ionization

clusters

• The cluster positions on track are generated uniformly using the (𝑑𝑁𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠/𝑑𝑥)𝑎𝑣𝑒𝑟𝑎𝑔𝑒 curve, obtained from Garfield++

• The energy of each cluster (𝐸𝑐𝑙) is generated according to the energy transfer spectra, predicted by Garfield::TrackHeed

• The number of electrons (cluster size) in each cluster is calculated from the 𝐸𝑐𝑙, taking into account the Garfield-predicted average

energy of the electron-ion pair production 𝑊 = 29.52 eV: 𝑁𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑠 = 𝐸𝑐𝑙/𝑊+𝛿, where 𝛿 is the fluctuation with sigma equals

𝐹𝑁𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑠, where the 𝐹 = 0.19 is the Fano factor

Peak finding algorithm
• We developed an ad-hoc peak finding algorithm, based on the dynamic estimation of the baseline level

• The main question: if this algorithm is suitable for FPGA?

Typical waveform (muons)
• Digitization time step is 0.5 ns (freq. = 2 GHz), signal/noise = 9.2/1.0 (according to V.M. Aulchenko)

Typical waveform (protons)

The idea of my peak finding approach
• The waveform contains local minimums and local maximums

• Each waveform segment “loc. min. – loc. max. – loc. min” is considered as peak candidate

• Peak candidate is identified as real peak if it satisfies a quality criterion. Currently one peak candidate can give only one real peak

• To calculate the peak quality correctly, one should account for the baseline shift, caused by the previous peaks

• Thus, for each peak candidate we should estimate the baseline it resides on (“running baseline”)

Peak candidates in the waveform (protons)

Signal shape and attenuation coefficients (protons)
• To estimate the baseline it is reasonable to benefit from our knowledge of the signal shape

• Signal rise time is ~ 1.15 ns (2 digitization steps)

• We calculate the attenuation coefficients att[1…7] for the 7 steps after the signal maximum

• In the real digitization the hitting to the signal maximum is not exact, this leads to ~5% inaccuracy in measuring of

the amplitude of a single peak and to some inaccuracy of the attenuation coefficients

The baseline estimation (muons)
• To estimate the baseline of the current peak candidate we consider the previous 3 peak candidates as a real single signal peaks.

Their contribution to the baseline is calculated using their amplitudes at their peaks (with subtraction of their baselines) and the

attenuation coefficients

• Often due of the overlap of many peaks the signal shape gets deteriorated, and this leads to the wrong baseline estimation (as a

rule - underestimation). To overcome this problem we scale the baseline with the coefficient to make it equal to the amplitude at

the first point of current peak candidate (= first local minimum). The only exception is the case of too short peak candidate rise

time (1 digitization step). In this case the baseline if scaled to the lower value first.min-(loc.max-first.min)

• For control we compare

the estimated baseline

with the true baseline,

calculated as a sum of

the signals of all the

avalanches, which

reached the maximum
before the starting point
of the current candidate.
In the vast majority of
cases the agreement is
good enough

• Currently we set
baseline to 0, if it
becomes <0 due to the
signals undershoot

The baseline estimation (protons)

The peak quality estimation

• After subtraction of the baseline (𝑏𝑖) from the peak candidate

amplitudes (𝑎𝑖) we calculate peak quality 𝑞 as a (minus) log.

likelihood for the hypothesis, that this set of measurements was

produced by a random Gaussian noise with known 𝜎𝑛𝑜𝑖𝑠𝑒. The

two ending points (local minima) of peak candidates are not

used:

𝑞 =

𝑖=1

𝑁
(𝑎𝑖 − 𝑏𝑖)

2

𝜎𝑛𝑜𝑖𝑠𝑒
2 + 𝑁 ∙ ln(2𝜋𝜎𝑛𝑜𝑖𝑠𝑒

2)

• The peak candidate is accepted as real peak if 𝑞>3.0

The found “real peaks” (muons)

The found “real peaks” (muons)

The found “real peaks” (muons)

The found “real peaks” (muons)

The found “real peaks” (muons)

The found “real peaks” (muons)

The found “real peaks” (muons)

The found “real peaks” (muons)

The found “real peaks” (muons)

The found “real peaks” (protons)

The found “real peaks” (protons)

The found “real peaks” (protons)

The found “real peaks” (protons)

The found “real peaks” (protons)

Merging the waveforms

from the wire ends

• After the peak finding we merge the

waveforms from the wire ends

• This is done by finding the time shift

between waveforms via the maximization

of their cross-correlation function

• After the alignment of signals in time we

find the pairs of peaks with maximum

overlap (= dot product) and "merge" them

• The remaining unpaired peaks are

considered to be wrong or noise peaks

before merging

after merging

Hit z coordinate measurement
• We can reconstruct the coordinate along the wire via the charge division formula:

1. Using the full integrated amplitudes;

2. Using the sum of merged peak amplitudes.

• Another variant is to use the time shift between waveforms – it gives a better

resolution of the order of ~20 mm

• Due to the discreetness of time measurement the z coordinate, reconstructed from

the time shift, show a "comb" structure

• Theoretically, the resolution may be further improved if we will save not only the

maximums, but also the amplitudes just before and after the maximums. Is it

practically possible?

• The discreetness of time

measurement also gives

a periodic modulation of resolution

on z, measured via sum of

peak amplitudes: "peak" amplitude

is measured not in the actual signal

peak, but in different "phase" of

the peak, depending periodically on

the true z

Peaks clusterization algorithm
• The decisive point for the cluster counting and timing is the possibility of peaks clusterization

• We consider each merged peak as possible cluster and assign the gaussian to it. The time 𝜇𝑖, 𝑖 = 1,… ,𝑁𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 , of each gaussian is equal to the corresponding
peak time 𝑡𝑗, 𝑗 = 1,… ,𝑁𝑝𝑒𝑎𝑘𝑠 and sigma equals to the time spread due to diffusion, 𝜎𝑖 = 𝜎𝑑𝑖𝑓𝑓(𝜇𝑖)). Thus, our model to describe the set of peak times is a

gaussian mixture model

• Using the Expectation Maximization (EM) algorithm we iteratively recalculate (until convergence) the positions 𝜇𝑖 of gaussians and their weights 𝑤𝑖 using the
probabilities 𝑝𝑖,𝑗 that the peak #𝑗 was produced by the cluster (gaussian) #𝑖:

• After the convergence was reached, we usually find that some gaussians are “stucked together” (~ “clusterization happened”), some other gaussians have almost
zero weights. These effects are the signs of too large model complexity

• To simplify the model, we should choose the cluster to be removed. To make a best choice, we try to remove each one of them and delegate its “responsibility”
𝑚𝑖 to its nearest neighbor, and calculate the resulting change of the log-likelihood of data description 𝐿.We remove the cluster giving the smallest likelihood loss
and start clusterization from the very beginning (without removed gauss)

𝑝𝑖,𝑗 =
𝑤𝑖

2𝜋𝜎𝑖
exp −

(𝑡𝑗 − 𝜇𝑖)
2

2𝜎𝑖
2

total “responsibility”
of cluster #𝑖:

𝑚𝑖 = 𝑗=1
𝑁𝑝𝑒𝑎𝑘𝑠
𝑝𝑖,𝑗

new weights:

𝑤𝑖 =
𝑚𝑖

𝑖=1

𝑁𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠𝑚𝑖

new cluster times:

𝜇𝑖 =
1

𝑚𝑖

𝑗=1

𝑁𝑝𝑒𝑎𝑘𝑠

𝑝𝑖,𝑗𝑡𝑗

next iteration

• To find the optimal number of gaussians we use the Akaike information criterion (AIC), which
finds the balance between the likelihood of data description and the model complexity

𝐿 =

𝑗=1

𝑁𝑝𝑒𝑎𝑘𝑠

ln

𝑖=1

𝑁𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠

𝑝𝑖,𝑗 𝐴𝐼𝐶 = 2𝑁𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 − 2𝐿

• Current version of algorithm shows poor results for the cluster counting (~50% efficiency for m.i.ps). Improvements are necessary

• Ideas: use the described algorithm for cluster timing, and try to estimate the most probable number of clusters within each gaussian using the peak amplitudes (=
separate cluster timing and cluster counting tasks); use the information from all the cells on the track (e.g. the distribution of time separations between peaks);

• I have a standalone code (only C++ and ROOT) to generate the set of waveforms (~”track”), to find the peaks and to clusterize them. I can share it if anybody
would like to try his own ideas for the clusterization algorithm. The joint efforts are necessary, any ideas are welcome!

• Peaks clusterization for muons:

Peaks clusterization algorithm

• Peaks clusterization for protons (p = 250 MeV/c):

Peaks clusterization algorithm

Track impact parameter debiasing
• After the peaks clusterization we can use a set of

cluster times to reduce the bias of the track impact
parameter, caused by the discreetness of ionization

• The Maximum Product of Spacings algorithm has
been proposed for this purpose
https://doi.org/10.1016/j.nima.2015.11.028

• The idea is to find the impact parameter, which
makes a sample of cluster positions along the track
most similar to a sample from a uniform
distribution. This is achieved by the maximization
of the geometrical mean of spacings between
clusters:

• In the stand-alone implementation of this algorithm
we see a serious reduction of impact parameter bias,
but a very small effect on resolution

𝑦𝑖 =
𝜌𝑖
2 − 𝑏2

(𝑑𝑐𝑒𝑙𝑙/2)
2−𝑏2

Normalized spacings
between clusters:

𝐷𝑖 = 𝑦𝑖 − 𝑦𝑖−1

𝐻 𝑏 =
1

𝑁𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 + 1

𝑖=1

𝑁𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠

ln 𝐷𝑖 , 𝜌𝑀𝑃𝑆 = argmax𝐻(𝑏)

https://doi.org/10.1016/j.nima.2015.11.028

Track impact parameter debiasing

• In the full simulation the debiasing effect is also seen (despite the questionable work of clusterization algorithm)

some negative bias, probably due to circular
isochrones assumption in my time-to-rho relations

Particle identification (very preliminary)
• We compare the signal/background separation powers for the following identification variables:

1) 𝒅𝑬/𝒅𝒙 with the truncation factor 𝜂 = 0.7;

2) 𝑑𝑁𝑝𝑒𝑎𝑘𝑠/𝑑𝑥 – number of merged peaks is used instead of number of clusters;

3) 𝑑𝑁𝑐𝑙𝑢𝑠𝑡. 𝑀𝐶𝑇𝑟𝑢𝑡ℎ/𝑑𝑥 – the true number of clusters in each cell is used, to see the theoretical limit of PID efficiency;

4) 𝑑𝑁𝑐𝑙𝑢𝑠𝑡. 𝑟𝑒𝑐𝑜/𝑑𝑥 – the number of clusters is taken from the clusterization algorithm.

𝑁𝜎 =
|𝜇1 − 𝜇2|

(𝜎1 + 𝜎2)/2
• Separation power:

𝜇1,2 - most probable values

𝜎1,2 = 𝐹𝑊𝐻𝑀/ 2ln(2)

Particle identification (very preliminary)

Particle identification (very preliminary)

Plans

• Estimate the effect of impact parameter debiasing on track parameter resolutions (nearest)

• Try to improve the clusterization algorithm

• Understand, if my peak finding algorithm (or its simplified version) is suitable for FPGA, if not – use
another one

• Finish the development of full simulation/reconstruction chain, especially track finding algorithm
(next half year)

• Push the full simulation chain in the master branch of the Aurora SCTF detector simulation package

