Study of peak finding algorithm

Guang Zhao*, Shuiting Xin*, Siman Liu⁺, Linghui Wu*, Mingyi Dong*, Shengsen Sun*, Weimin Song⁺

zhaog@ihep.ac.cn

* Institute of High Energy Physics, + Jilin University Cluster Counting Meeting Nov. 25th, 2021

Outline

- Introduction to the peak finding algorithm
- Parameter optimizations
- Summary

Introduction

- Peak finding is essential for ionization measurement using cluster counting technique
- Requirement: fast and efficient
 - Fast: Data size of waveform is huge. Fast online algorithm at the front-end is recommended
 - Efficient: Good ability to recover pile-up. High pulse detection efficiency.
- Peak finding with derivatives is a simple and classic algorithm that may satisfy the speed and performance requirements
 - e.g., similar algorithm implemented for PANDA EMC

Peak finding algorithm

- Noise reduction
 - Filter out high frequency noises in the waveforms in order to improve the S/N ratio
 - Moving average: $MA[i] = \frac{1}{M} \times \sum_{k=0}^{K < M} S[i k]$

Cluster counting algorithm (II)

• First derivative and integration

- First derivative (D1): D1[i] = MA[i] MA[i 1]
- Integration on the positive D1 (INT1): recover the rising edge and removing falling edge
- Hit detection: Passing a threshold

Cluster counting algorithm (III)

- Second derivative and integration: recover pile-up peaks on the rising edge
 - Second derivative (D2): D2[i] = INT1[i] INT1[i 1]
 - Integration on the positive D2 (INT2)
 - Hit detection: Passing a threshold

Pile-up on the falling edge is easier to recover. However, it is not the case for pile-up on the rising edge.

Optimization

Detection threshold

• Minimize the fake rate

• Moving average size

• Maximize the counting efficiency

• Simulation setup

- Gas: 90% He + 10% iC₄H₁₀
- Particle: 10 GeV/c pions
- Time constant: 1 ns
- Noise level: 2%

Waveform with "MC truth" times

- Red line: primaries
- Black line: secondaries
- Triangle: detected

The MC truth matching algorithm

- A detected time is matched to a truth time if
 - $|T_{det} T_{truth}| < 2 \text{ ns}$
- If the matched truth time is from a primary electron, the detection is defined as a "primary"
- If the matched truth time is from a secondary electron, the detection is defined as a "secondary"
- If a detection is both a primary and secondary, "primary" is set
- Otherwise, "fake" is set

Fake rate vs. threshold

10

Efficiency vs. MA size

Apply thresholds determined in the previous slide

N_{cluster} detected by the algorithm

of detected pulses

of detected pulses (matched to primaries)

- The dN/dx distribution is very like a Gaussian shape

- Only a small portion of counting is related to the secondaries. If this rate is stable, there will be little harm for PID. Need further checks.

Conclusion

- A "smoothing + derivatives" algorithm for cluster counting is developed
- Parameters have been optimized
- Next to do
 - Develop a better low pass filter with better stopband attenuation
 - Try and optimize the algorithm based on the beam test data

Backup

More plots with the optimized algorithm

of fake pulses (match to nothing)