The measurement of Rb/Rc with ParticleFlow Network method at the CEPC

Libo Liao, Gang Li, Weiming Song, Shudong Wang, Zhaoling Zhang December 1, 2021

Motivation 0000000	Analysis methods 000	Preliminary results	Summary & Outlook

1

Outline

Motivation

Motivation ⊙●○○○○○	Analysis methods 000	Preliminary results	Summary & Outlook

Jets: Initiated by their ancestral particles via parton shower within a cone.

♦ Domainant decays of H/Z/W;

Jets

- $\diamond\,$ Key physics objects in H/Z/W studies;
- ◊ To understand the QCD process;

◊ Important to new physics.

Jet clustering, jet tagging, jet charge, ...

Motivation 000000	Analysis methods	Preliminary results	Summary & Outlook

Several methods

Cut-based \rightarrow TMVA(BDT, XGBoost, etc.) \rightarrow Machine Learning¹ (DNN, CNN, Graph, Sets, ...)

¹https://github.com/iml-wg/HEPML-LivingReview

Preliminary results

Summary & Outlook

ParticleFlow Network²

Particle Flow Networks, which allow for general energy dependence and the inclusion of additional particle-level information such as charge and flavor.

$$\hat{O}(p_1,\ldots,p_M) = F(\sum_{i=1}^M \Phi(p_i))$$

Each particle is mapped by a function Φ to latent space, then mapped by a continuous function *F*, softmaxed function, to the value of observable.

A visualization of the decomposition of an observable

²arXiv:1810.05165

Motivation 0000●00	Analysis methods 000	Preliminary results	Summary & Outlook

ParticleFlow Network

This is a particular dense neural natwork to parameterize the functions F and Φ .

The latent observable is $\mathcal{O}_a = \sum_i \Phi_a(y_i, \phi_i, z_i, PID_i)$. The output of *F* is a softmaxed signal (*S*) versus background (*B*) discriminant.

Both applied in single jet-tagging and event-tagging.

Motivation
0000000

Analysis metho

Preliminary results

Summary & Outlook

Application of jet tagging

Relative decay width (R_b, R_c, R_{uds}):

$$R_{q(q=b,c,uds)} = \frac{\Gamma_{Z \to qq}}{\Gamma_{Z \to had.}}$$

Status of R_b [Bin Yan' s report ³]:

Uncertainties of measurement and prediction are both 10^{-4} level.

	measured value	SM prediction
R_b	0.21629 ± 0.00066	0.21578 ± 0.00011

³https://ihepco.yonsei.ac.kr/event/130/contributions/531/ attachments/394/616/Zbb_BY.pdf

Motivation ○○○○○○●	Analysis methods 000	Preliminary results	Summary & Outlook

Relative decay width

Different measurement methods:

- ◊ LEP: Double-tagging method
- Template method: See Bo Li' s report⁴;
- $\diamond\,$ New method: Global analysis 5.

⁴https://indico.ihep.ac.cn/event/14938/session/12/contribution/ 152/material/slides/0.pdf ⁵https://indico.ihep.ac.cn/event/14938/session/4/contribution/ 179/material/slides/0.pdf

Analysis methods

Motivation 0000000	Analysis methods ○●○	Preliminary results	Summary & Outlook

Global analysis

A general event selection:

$$\begin{pmatrix} n_1 \\ n_2 \\ n_3 \end{pmatrix} = \begin{pmatrix} \epsilon_{11} & \epsilon_{12} & \epsilon_{13} \\ \epsilon_{21} & \epsilon_{22} & \epsilon_{23} \\ \epsilon_{31} & \epsilon_{32} & \epsilon_{33} \end{pmatrix} \begin{pmatrix} N_1 \\ N_2 \\ N_3 \end{pmatrix}$$

Estimating *N_i*: inverse the equation:

$$\begin{pmatrix} N_1 \\ N_2 \\ N_3 \end{pmatrix} = \begin{pmatrix} \epsilon_{11} & \epsilon_{12} & \epsilon_{13} \\ \epsilon_{21} & \epsilon_{22} & \epsilon_{23} \\ \epsilon_{31} & \epsilon_{32} & \epsilon_{33} \end{pmatrix}^{-1} \begin{pmatrix} n_1 \\ n_2 \\ n_3 \end{pmatrix}$$

Efficiency matrix is the key.

It is confusion matrix in ML equivariantly.

Motivation 0000000	Analysis methods ○○●	Preliminary results	Summary & Outlook

Global analysis

Compare to double-tagging method and template method, global analysis has several advantages:

- $\diamond\,$ No necessary to consider the correlations between jet pair, such as $b\bar{b}$ and $c\bar{c}$
- ◊ Smaller stat. uncertainty with multinomial distribution.

$$B_i = \frac{N_i}{N_1 + N_2 + N_3 + \cdots}, \sigma_N = \sqrt{N \times p \times (1 - p)}$$

◇ "On-shop" measurement: all R_is measured simultaneously is more efficient.

Preliminary results

Motivation	Analysis methods	Preliminary results	Summary & Outlook
0000000	000	○●○○○○○○○○○	

Data sets

Full simulation with CEPC_V4 at Z-pole. 85% for training & validation, 15% for test. For jet tagging

◊ 900k jets for each flavor(b, c, uds);

 \diamond Jet clustering by ee - kt algorithm in the LCFIPlus framework.

For R_b, R_c, R_{uds} measurement with event-tagging:

- ♦ 450k events for each decay: $Z \rightarrow b\bar{b}, Z \rightarrow c\bar{c}, Z \rightarrow (uds)$;
- ◊ No jet clustering.

Analysis metho 000 Preliminary results

Summary & Outlook

Distributions of data sets

Variables list: Impact parameter, Energy, Momentum, Charge, Angle information, PID, 12 features for each (charged) particle in total.

Analysis method

Preliminary results

Summary & Outlook

Ingredients of each event

Ingredients of each event weighted by momentum.

Motivation 0000000	Analysis methods 000	Preliminary results	Summary & Outlook

Performence metrics

Confusion matrix and ROC curve

The production of efficiency and purity($\epsilon \times \rho$) is popular in HEP.

iviotivation Analysis m	ethods Preliminary results	Summary & Outlook
0000000 000	00000000000	000

The preliminary results of jet tagging

The confusion matrix and ROC plot of jet tagging with PFN.

The performence of jet tagging improved significantly, especially for b and uds jets.

Analysis method

Preliminary results

Summary & Outlook

Compared with previous study

Algorithm	DNN	BDT	GBDT	gcforest	XGBoost	PFN
Accuracy	0.788	0.776	0.794	0.785	0.801	0.867

Fan Yang's report⁶ apart from PFN in November 7, 2017

The best performence is XGBoost, others are close to 0.8. And the accuracy of PFN is 0.867, improved more than 8%.

⁶https://indico.ihep.ac.cn/event/6618/session/19/contribution/ 136/material/slides/0.pdf

Motivation

Analysis method

Preliminary results

Summary & Outlook

Compared with previous study

tan	ϵ_S	$\epsilon \times$	ρ	Improvement
lay		XGBoost	PFN	improvement
	50%	-	49.9%	-
b	90%	79.7%	86.6%	8.7%
	95%	72.8%	87.0%	19.5%
	50%	-	49.0%	-
с	90%	58.5%	74.4%	27.2%
	95%	50.3%	72.4%	43.9%
uds	50%	-	48.7%	-
	90%	-	83.3%	-
	95%	-	85.6%	-

XGBoost versus PFN.

Motivation	Analysis methods	Preliminary results	Summary & Outlook
000000	000	000000000000	000

The preliminary results of event-tagging

The confusion matrix and ROCs of event-tagging with PFN.

The performence of event-tagging is comparable with jet-tagging.

Motivation 0000000	Analysis methods	Preliminary results	Summary & Outlook

The preliminary results of R_b & R_c & R_{uds}

Assuming 10^{11} statistics with $R_b = 0.2158, R_c = 0.1720, R_{uds} = 0.6122 \rightarrow$ the Ni sampled $\rightarrow n_i \rightarrow$ estimate N_i . Repeat the procedure 10,000 times.

Motivation	Analysis methods	Preliminary results	Summary & Outlook
000000	000	00000000000	000

The preliminary results of R_b & R_c & R_{uds}

Motivation

The stat. uncertainties of $R_b \& R_c \& R_{uds}$

	σ_{R_b}/R_b	σ_{R_c}/R_c	$\sigma_{R_{uds}}/R_{uds}$
LEP	3100	-	-
Bo Li's	5.40	13.38	3.41
This study	6.07	6.97	2.51
Diff.	\downarrow	\uparrow	\uparrow

Relative uncertainty (10^{-6}) .

CEPC can improve the Rb presicion by a factor of 500. Difference between this two results should be studied further.

Summary & Outlook

Summary & Outlook

Summary:

- $\diamond\,$ The performence of jet tagging with PFN improved 8%.
- \diamond The statistic uncertainty of R_b improved a factor of 500 and helpful to clarify the Rb problem.
- ◊ Need more validation for our study.

Outlook:

- Optimize the ML model & feature selection;
- Try more ML architectures, such as ParticleNet;
- ◊ Try strange tagging;
- Optimize the 4th concept detector according to jet tagging.

Thank you!