Preliminary beam test results

F. Grancagnolo Dec. 1st, 2021

The test

Purpose

• Demonstrate the ability to count clusters at a fixed βγ (e.g. muons

at a fixed momentum – 165 GeV/c) by changing:

- the cell size (1 - 3 cm)

- the track angle (0° to 60°)

- the gas mixture (90/10: 12 cl/cm, 80/20: 20 cl/cm, for m.i.p.)

• Establish the limiting parameters for an efficient cluster counting:

- cluster density as a function of impact parameter
- space charge (by changing gas gain, sense wire diameter, track angle)
 gas gain stability

• Train different cluster counting algorithms

- ∽ Claudio CAPUTO
- ← Federica CUNA Nicola DE FILIPPIS
- Francesco GRANCAGNOLO
- ⊢ Matteo GRECO
- L Sergey GRIBANOV
- _ Kurtis JOHNSON
- ____ Sasha POPOV
- ⊥ Angela TALIERCIO
- ∽ Shuiting XIN

UC Louvain INFN Lecce INFN Bari INFN Lecce INFN Lecce BINP Novosibirsk U of Florida BINP Novosibirsk UC Louvain IHEP Beijing

Drift tubes schematics

The Hardware

The drift tubes

The rotating table

The HV system

Flow

DRS4 DAQ board and Trigger

16 channels data acquisition board designed and used by the MEG2 experiment at PSI ($\mu \rightarrow e + \gamma$) (credit to S. Ritt, Paul Sherrer Institute, Zurich, Switzerland)

12cm x 6cm upstream and downstream scintillator tiles (designed and used as timing counter of the MEG2 experiment at PSI) used in coincidence and readout by SiPM's

The DAQ board

DRS4 chip

Shiff Register *Analog switched capacitor array: analog memory with a depth of 1024 sampling cells developed at PSI, perform a "sliding window" sampling.

***500MSPS** ↔ **5GSPS sampling speed** with 11.5 bit signal-noise ratio *8 analog channels + 1 clock-dedicated channel for sub 50ps time alignment

- * Pile-up rejection O(~10 ns)
- * Time measurement O(10 ps)
- O(0.1%) * Charge measurement

Preamp channel

Clear Or All Help Chn Gain PZC Trigger Level Chn Pol P00 P01 P02 P03 P04 P05 P06 P07 P08 P09 P10 P11 P12 P13 P14 P15 P16 P17 5 СН0 + CH1 + trigger patterns cnan CH2 + СН3 + CH4 + • . ٠ • CH5 + • CH6 + • • . СН7 + • . . CH8 + • . ٠ СН9 + • • + • ٠ СН11 + • • • • • • • H12 + • CH13 + • • • • . CH14 + • • • • . CH15 + • EXT + 6

WaveDREAM Board (WDB)

Channel Configuratio

mV

mV

mV

m٧

mV

mV

mV

mV

mV

-19

-19

-19 mV

-19

-19

-19

-19 m٧

-19

-19

-19

-19

-19

-19

-19

-19

ΗV

0

0 v

0

0

0 V 0

0 v 0 uА

0 V

0

0 v 0 uA

0 V 0 uA

0 v 0

0 V

0

V 0

V 0 uA

v 0

V 0

> V 0 uA

V

Current

ngs

0 uΑ

0

0 uA

0 uA

0 uA

0

114

uА

uА

uА

uА

uA

Data format

WDS: Binary format

- * Header relating to the board consisting of the words:
 - * DRS8
 - * TIME
 - * B#XXX (XXX represents the card number and changes according to the WDB, in this case 033)
 - * Calibration information

- * Header EVENT
 - * Serial. Number
 - * Time information
 - * Channel Information

The macro for converting binary files to root files is ready.

Word	Byte 0	Byte 1	Byte 2	Byte 3	Contents	
0	'D'	'R'	'S'	'8 '	File header, Byte 3 = version	
1	'T'	т	'M'	'E'	Time Header	
2	'B'	#	Board nun	nber	Board serial number	
3	,C,	·0·	.0,	ʻ0ʻ	Channel 0 header	
4	Time Bin V	Vidth #0	-	_		
5	Time Bin V	Vidth #1			Effective time bin width in ns fo	
					floating point format	
1027	Time Bin V	Vidth #1023				
1028	.C.	.0,	.0.	'1'	Channel 1 header	
1029	Time Bin V	Vidth #0				
1030	Time Bin V	Vidth #1			Effective time bin width in ns fo	
					 channel 1 encoded in 4-Byte floating point format 	
2052	Time Bin V	Vidth #1023				
2053	'E'	'H'	'D'	'R'	Event Header	
2054	Event Seri	al Number			Serial number starting with 1	
2055	Year Month				Event date/time 16-bit values	
2056	Day Hour Minute Seco		Hour		_	
2057			Second		-	
2058	Millisecond	1	Range		Range center (RC) in mV	
2059	'B'	#	Board nun	nber	Board serial number	
2060	'C'	·0·	.0.	'0'	Channel 0 header	
2061	Scaler #1				Scaler for channel 0 in Hz	
2062	'T'	#	Trigger ce	8	Channel 0 first readout cell	
2063	Voltage Bir	n #0	Voltage Bi	in #1	Channel 0 waveform data encoded in 2-Byte integers. 0=RC-0.5V and 65535=RC+0.5V. RC see header.	
2064	Voltage Bir	n #2	Voltage Bi	in #3		
2574	Voltage Bir	n #1022	Voltage Bi	in #1023		
2575	'C'	.0.	.0.	'1'	Channel 1 header	
2576	Scaler #2				Scaler for channel 1 in Hz	
2077	'T'	'# '	Trigger ce	8	Channel 1 first readout cell	
2578	Voltage Bir	n #0	Voltage Bi	n #1	Channel 1 waveform data	
	Voltage Bir	Voltage Bin #2 Voltage Bin #3		encoded in 2-Byte integers.		
2579	-				0=RC-0.5V and 65535=RC+0.5V. RC see	
2579					header.	
2579 3089	Voltage Bir	n #1022	Voltage Bi	n #1023		

The setup

Event display

Event display

Data storage

- Raw data stored on CERNBox: https://cernbox.cern.ch/index.php/s/ DKPygC4txiDCE
 - Public accessible; you can download it
 - Only binary files provided
- Github with online analysis code and preliminary offline code: https://github.com/clacaputo/drifttubes_analysis
 - Code for converting RAW data to ROOT and PKL files is provided in the repository
 - Easic Runs database, based on YAML files, is provided
- Log Book (To be Updated): https://codimd.web.cern.ch/ 9UXozxEwRK6vsJ4ilia9BA

- https://cernbox.cern.ch/index.php/s/ lzI6PygC4txiDCE
- One folder for each day of data taking, each folder should contain:
 - txt file with informations about the run (To be moved in the log book)
 - RAW files (binary),
 - ROOT and pkl files can be easily created with the code provided in my repo (more in next slides)

 TestBeam_ClusterCounting_2021

 Nome

 04Nov2021

 05Nov2021

 06Nov2021

 07Nov2021

 09Nov2021

 10Nov2021

 10Nov2021

 10Nov2021

 11Nov2021

 12Nov2021

 12Nov2021

- Github: https://github.com/clacaputo/drifttubes_analysis
- YAML config files for the different runs
- Decoding code (Thanks to Gianluigi!)
- Conversion code to ROOT, pkl files, parallellized on HTCondor
- script for submitting on HPC facilities, easily customisable
- code for online Landau fit, plus plot productions
- Peak finding (BETA version)

~	clacaputo Yaml files with HV values
	data
	notebooks
	scripts
۵	README.md
۵	landau_fit.py
۵	pkl_conversion.py
۵	plotting_run.py
۵	read_binary_comp.C

• YAML config files for the different runs, example at this link

8 li	nes (74 sloc) 3.27 KB	Raw	Blame	Ð		I	
	GasMixture: 90.10						
	MuonEnergy: 165 #GeV						
	GSPS: 1.2						
	delay: 725 #ns						
	NumberEvents: 5000						
	nominal: {"ch4": 1200, "ch5": 1245, "ch6": 1300, "ch7": 1300, "ch8": 1340, "ch9": 1340, "ch10": 1495, "ch11": 1550, "ch12":	1720,	"ch13":	1670,	"ch14	": 1	810}
	main_path: /eos/user/c/ccaputo/TestBeam_ClusterCounting/11Nov/						
	Measurements:						
	Voltage_m20:						
	voltage: "m28"						
	angle_scan:						
	angle_15:						
	file_bin: "11Nov_15angle_HVnominalMinus20_1p2GSP5_5k"						
	file_root: "11Nov_15angle_HVnominalMinus20_1p265PS_5k.root"						
	file_pkl: "11Nov_15angle_HVnominalMinus20_1p2GSP5_5k.pkl"						
	angle_30:						
	file_bin: "11Nov_30angle_HVnominalMinus20_1p2GSP5_5k"						
	file_root: "11Nov_30angle_HVnominalMinus20_1p265PS_5k.root"						
	file_pkl: "11Nov_30angle_HVnominalMinus20_1p26SP5_5k.pkl"						
	angle_45:						
	file_bin: "11Nov_45angle_HVnominalMinus20_1p26SP5_5K"						
	file_root: "11Nov_45angle_HVnominaUMinus20_1p2GSP5_5k.root"						
	file_pkl: "1Nov_45angle_HVnominalMinus20_1p2GSPS_5k.pkl"						
	ang te_69:						
	file_bit: "INOV_60angle_HVnominalMinus20_1p265PS_10k"						
	file_root: "IINOV_Geangle_HVnominalVinusZ0_1pZGSPS_10K.root"						
	Tite_pK:: "INOV_60angle_HVnominalMinus20_1p2GSPS_10k.pkl"						
	voltage_nominat:						
	voltage: mominal"						
	ang te_scan:						
32	angle 0:						

Analysis plan

- Determine gas gain for the different (9) configurations and for different gas mixtures
- Study the space charge limitations for an efficient cluster collection
- Train different cluster counting algorithms by comparing to a well known method (PeakFit)
- Check Poisson nature of cluster counting (tube size, track angle, gas mixture)

Some considerations on gas gain

Capacitance per unit length (cylinder approximation):

 $C_{L} = 2\pi\epsilon_{0}/\ln(R/r_{w}) \qquad C_{tube} = C_{L} \times L$ Inductance per unit length (cylinder approximation): $L_{L} = 2 \times 10^{-7} \ln(R/r_{w}) \mu H/m$ our drift tubes: L = 30, 40 cm R = 0.4, 0.9, 1.4 cm $r_{w} = 5.0, 7.5, 10.0, 12.5, 20.0 \,\mu m$

Characteristic Impedance: $Z = \sqrt{L/C}$

At gas gain = 10^5 , one single electron deposits a charge $Q_0 = 1.6 \times 10^{-19} \times 10^5$ Coul = 16 fCoul and the pulse height generated by a single electron would be:

 $\Delta V = Q_0 / C_{tube}$

Charge distribution

A few numbers

configuratio n number	R	2×r _w	L	CL	L	\mathbf{C}_{tube}	Ζ	ΔV (10⁵ gain)	ΔV' (10 ⁵ gain)
1	0.4 cm	10 µm	0.4 m	8.37 pF/m	1.34 μH/m	3.35pF	400 Ω	4.78 mV	3.75 mV
3	0.4 cm	15 μm	0.4 m	8.91 pF/m	1.26 μH/m	3.56 pF	376 Ω	4.49 mV	3.65 mV
5 - 7	0.4 cm	20 µm	0.4 m	9.33 pF/m	1.20 μH/m	3.73 pF	359 Ω	4.29 mV	3.57 mV
9 - 11	0.4 cm	25 µm	0.4 m	9.69 pF/m	1.15 μH/m	3.88 pF	344 Ω	4.12 mV	3.50 mV
13	0.9 cm	20 µm	0.3 m	8.22 pF/m	1.36 μH/m	2.47 pF	407 Ω	6.48 mV	5.04 mV
15	0.9 cm	25 µm	0.3 m	8.50 pF/m	1.32 μH/m	2.55 pF	394 Ω	6.27 mV	4.96 mV
17	0.9 cm	40 µm	0.3 m	9.15 pF/m	1.22 μH/m	2.75 pF	365 Ω	5.82 mV	4.80 mV
19	1.4 cm	25 µm	0.3 m	7.96 pF/m	0.94 μH/m	2.39 pF	344 Ω	6.69 mV	5.02 mV
21	1.4 cm	40 µm	0.3 m	8.54 pF/m	0.85 μH/m	2.56 pF	315 Ω	6.25 mV	5.30 mV

 $\Delta V'(10^5 \text{ gain}) = \text{single electron pulse height at readout, for an HV producing a reduced electric field: E/P, corresponding to a gas gain of <math>10^5$

Determining HV (10⁵ gain)

Garfield run on different configurations by Shuiting for P = 760 torr, $T = 20^{\circ}C$ renormalized for P = 725 torr and extrapolated for 10 and 40 µm wires and readjusted by observing average maximum pulse height

HV table (He/iC₄H₁₀ = 90/10, P = 725 torr)

1st attempt (from Garfield)

configuration number	HV	relative gas gain (ΔV)		
1	1230 V	2.6		
3	1255 V	1.4		
5 - 7	1305 V	1.3		
9 - 11	1330 V	0		
13	1470 V	0.6		
15	1545 V	0.9		
17	1670 V	0		
19	1620 V	0		
21	1765 V	0		

Average maximum pulse height

Assume that the average maximum pulse height single electron pulse height and fit to a Landau distribution by taking into account the

amplifier gain (x 10)

Average maximum pulse height

- Max amplitude/ per channel distribution, fitted with a landau 11Nov_45angle_HVnominal_1p2GSPS_1ok_LANDAU
 - https://github.com/clacaputo/drifttubes_analysis/blob/main/landau_fit.py
- More of these plots: https://cernbox.cern.ch/index.php/s/yjoJLkgUbPC1ELG

HV table (He/iC₄H₁₀ = 90/10, P = 725 torr)

1st attempt (from Garfield)

configuration number	HV	relative gas gain (ΔV)	HV	relative gas gain (ΔV)
1	1230 V	2.6	1230 V – 30 V	1.2
3	1255 V	1.4	1255 V <mark>– 10 V</mark>	1.1
5 - 7	1305 V	1.3	1305 V – <mark>5 V</mark>	1.1
9 - 11	1330 V	0	1330 V + <mark>10 V</mark>	1.1
13	1470 V	0.6	1470 V + <mark>25 V</mark>	1.1
15	1545 V	0.9	1545 V + <mark>5</mark> V	1.0
17	1670 V	0	1670 V + <mark>50 V</mark>	1.2
19	1620 V	0	1620 V + <mark>50 V</mark>	1.1
21	1765 V	0	1765 V + <mark>45 V</mark>	1.0

2nd attempt (corrections to Garfield)

actual gas

HV	gain (ΔV)	gain (ΔV')
1230 V - 30 V	1.2	1.47
1255 V – 10 V	1.1	1.29
1305 V <mark>– 5 V</mark>	1.1	1.31
1330 V + <mark>10 V</mark>	1.1	1.27
1470 V + <mark>25 V</mark>	1.1	1.57
1545 V + <mark>5 V</mark>	1.0	1.49
1670 V + <mark>50 V</mark>	1.2	1.92
1620 V + <mark>50 V</mark>	1.1	2.00
1765 V + <mark>45 V</mark>	1.0	1.73

Gas gain

gas gain vs HV

5

Cluster counting preliminary algorithms

- Novosibirsk algorithm
- Louvain algorithm
- Beijing algorithm
- Lecce algorithm

Please, see for details:

https://indico.ihep.ac.cn/event/15640/

Novosibirsk algorithm (courtesy of Slava Ivanov)

• Based on dynamic estimation of the baseline level

Novosibirsk algorithm (courtesy of Slava Ivanov)

Peaks clusterization algorithm

- The decisive point for the cluster counting and timing is the *possibility* of peaks clusterization
- We consider each merged peak as possible cluster and assign the gaussian to it. The time μ_i, i = 1, ..., N_{clusters}, of each gaussian is equal to the corresponding peak time t_i, j = 1, ..., N_{peaks} and sigma equals to the time spread due to diffusion, σ_i = σ_{diff}(μ_i)). Thus, our model to describe the set of peak times is a gaussian mixture model
- Using the Expectation Maximization (EM) algorithm we iteratively recalculate (until convergence) the positions µ_i of gaussians and their weights w_i using the probabilities p_{i,i} that the peak #j was produced by the cluster (gaussian) #i:

- After the convergence was reached, we usually find that some gaussians are "stucked together" (~ "clusterization happened"), some other gaussians have almost
 zero weights. These effects are the signs of too large model complexity
- To simplify the model, we should choose the cluster to be removed. To make a best choice, we try to remove each one of them and delegate its "responsibility" m_i to its *nearest neighbor*, and calculate the resulting change of the log-likelihood of data description *L*. We remove the cluster giving the smallest likelihood loss and start clusterization from the very beginning (without removed gauss)
- To find the optimal number of gaussians we use the Akaike information criterion (AIC), which finds the balance between the likelihood of data description and the model complexity $L = \sum_{k=1}^{N \text{ praces}} \ln \left(\sum_{k=1}^{N \text{ criterion}} \sum_{k=1}^{N \text{$

(AIC), which
$$L = \sum_{i=1}^{r} \ln \left(\sum_{i=1}^{c \text{ (AIL)} rs} p_{i,j} \right) \quad AIC = 2N_{clusters} - 2L$$

- Current version of algorithm shows poor results for the cluster counting (~50% efficiency for m.i.ps). Improvements are necessary
- Ideas: use the described algorithm for cluster timing, and try to estimate the most probable number of clusters within each gaussian using the peak amplitudes (=
 separate cluster timing and cluster counting tasks); use the information from all the cells on the track (e.g. the distribution of time separations between peaks);
- I have a standalone code (only C++ and ROOT) to generate the set of waveforms (~"track"), to find the peaks and to clusterize them. I can share it if anybody
 would like to try his own ideas for the clusterization algorithm. The joint efforts are necessary, any ideas are welcome!

Peaks clusterization algorithm

Peaks clusterization for muons:

Louvain algorithm (courtesy of Claudio Caputo)

- Based on continuous wavelet transform on data, using the wavelet function.
- Very preliminary

• Implemented a simple algorithm, based on the Second derivative

Attempt at using the second derivative by implementing the Satisky-Gorlay filter

Beijing algorithm (courtesy of Guang Zhao)

Based on moving average smoothing and on first and second derivatives \circ

Peak finding algorithm

Noise reduction

- Filter out high frequency noises in the waveforms in order to improve the S/N ratio
- Moving average: $MA[i] = \frac{1}{M} \times \sum_{k=0}^{K < M} S[i-k]$

Cluster counting algorithm (III)

· Second derivative and integration: recover pile-up peaks on the rising edge

- Second derivative (D2): D2[i] = INT1[i] INT1[i 1]
- Integration on the positive D2 (INT2)
- · Hit detection: Passing a threshold

Cluster counting algorithm (II)

- First derivative and integration
 - First derivative (D1): D1[i] = MA[i] MA[i 1]
 - Integration on the positive D1 (INT1): recover the rising edge and removing falling edge
 - Hit detection: Passing a threshold

Waveform with "MC truth" times

- Red line: primaries

Triangle: detected

Lecce algorithm (courtees frequerica Cuna)

• Based on moving average smoothing and on first and second derivatives

 Δb being the number of bins (signal rise time) over which the average value of f is calculated A peak (assumed to be an ionization electron) is found when Δf , f' and f" are above a threshold level, defined according to the r.m.s. noise of the signal function f, and when the time difference with a contiguous peak is larger than the time bin resolution.

How to convert found peaks in clusters?

Look to the time difference between electrons belonging to different clusters and those to the same cluster

Event by event plot the difference $t_i - t_{i+1}$ Vs t_i

Lecce algorithm (courtesy of Federica Cuna)

Cluster association approach

The association of electrons in clusters is based on the time difference between consecutive electrons. Electrons belonging to same cluster are separated by time differences which are compatible with single electron diffusion.

Lecce algorithm (courtesy of Federica Cuna)

Performance

 ε = Cls found/Cls recogn =103.9%

$$\varepsilon$$
= Cls found/Cls gen =94.3%

Time difference between MC generated cluster and reconstructed cluster

Lecce algorithm (courtesy of Federica Cuna)

Algorithm applied to the beam test data

NO attempt made yet to tune the search parameters