Study of $e^+e^- \rightarrow \chi_{c1}$ at center-of-mass energies

Ning Zhang¹, QingPing Ji ¹ and Kai Zhu ²

¹Henan Normal University, Xinxiang

² Institute of High Energy Physics, Beijing

HFP Group Meeting, Nov. 23th, 2021

2021-11-23

Outline

>Motivation

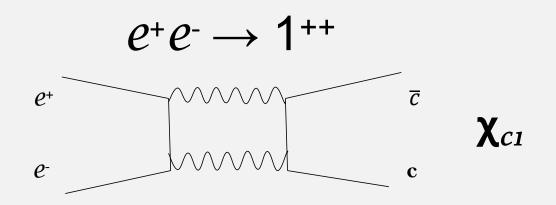
➤Data Sample and MC Simulation

➤Analysis

 $\bullet e^+ e^- \rightarrow \varphi \varphi$

PHSP

 $\bullet \phi \longrightarrow K^+K^-$


VSS

•ф → К + К -

VSS

Motivation

Up to now, only vector resonance (JPC = 1--) production has been observed in electron positron annihilation, C even resonances are only found in decay processes of vector resonances or in $\gamma\gamma$ scattering processes. In principle, the direct production of 1⁺⁺ states, like χ_{c1} , can also happen through two virtual photons exchange process, as shown in Fig. 1, this has never be seen experimentally.

2021-11-23

Data sample

sample		Ecms(MeV)	lum	inosity(1/pb)
data	X c1	3490.0		12.1
	X c1 X c1	3509.7 3508.0		39.3 181.8
	X c1 X c1	3510.6 3514.4		184.6 40.9
				Bos7703
incMC	3773	qqbar		

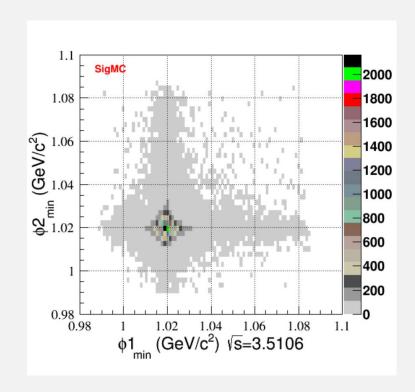
Preliminary selection

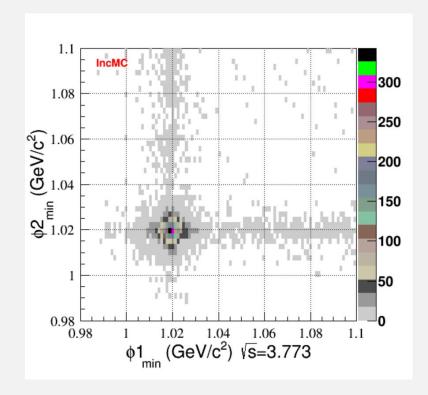
Charged tracks

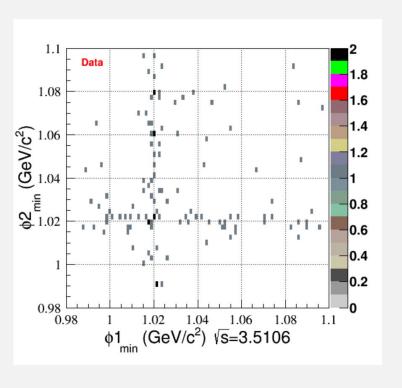
- $|R_{\rm r}| < 1$ cm, $|R_{\rm z}| < 10$ cm
- $|\cos\theta|$ < 0.93
- N = 4, $N_m = N_p = 2$

Vertex Fit for

2(K+K-)

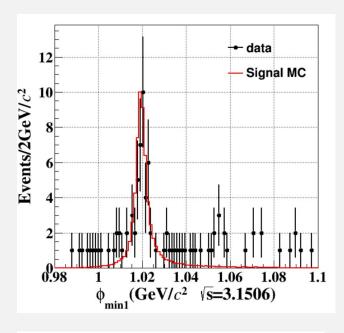

Good photon


- $0 \le TDC \le 14$
- Barrel : $E > 0.025 \text{ GeV}, |\cos\theta| < 0.8$
- End cap : E > 0.050 GeV, $0.86 < |\cos\theta| < 0.92$
- $N_{\gamma} \leq 6$

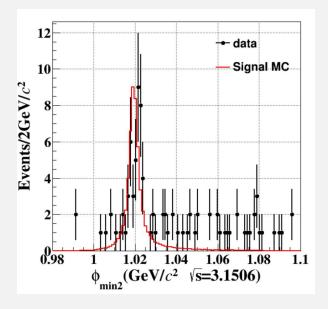

A 4C kinematic fit with $e^+e^- \rightarrow K^+K^-K^+K^-$

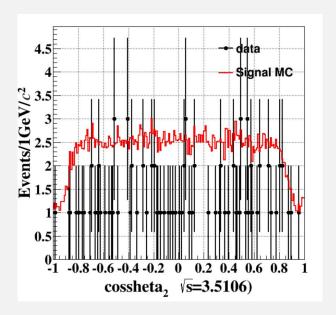
•Additional 4C kinematic fit for ${}^{2}(K^{+}K^{-})^{\gamma}$ final states.

MC and data analysis

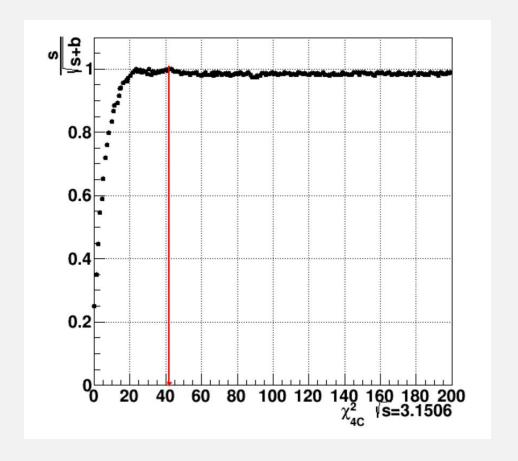


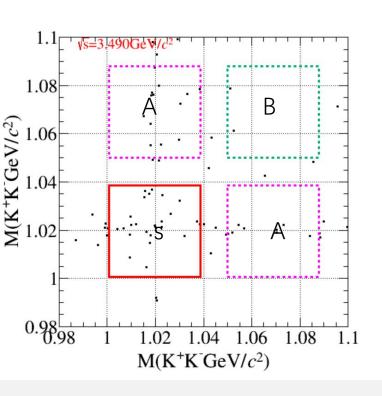




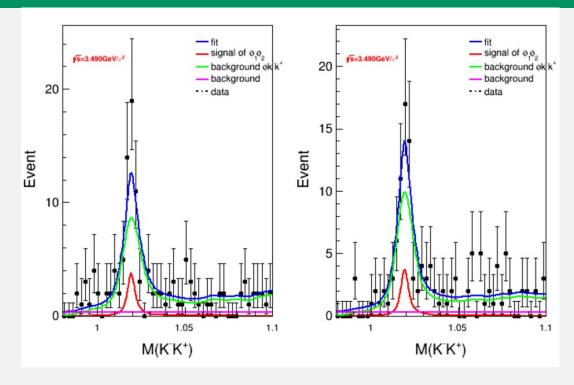

- ϕ_1 <1.1GeV
- φ₂<1.1GeV
- $\chi^2 < 42$

MC and data analysis

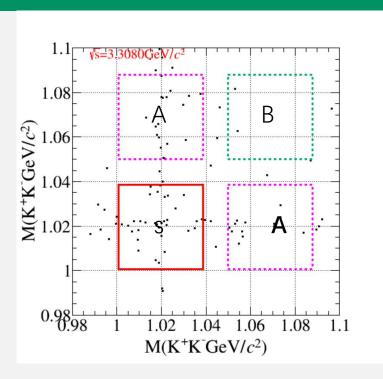




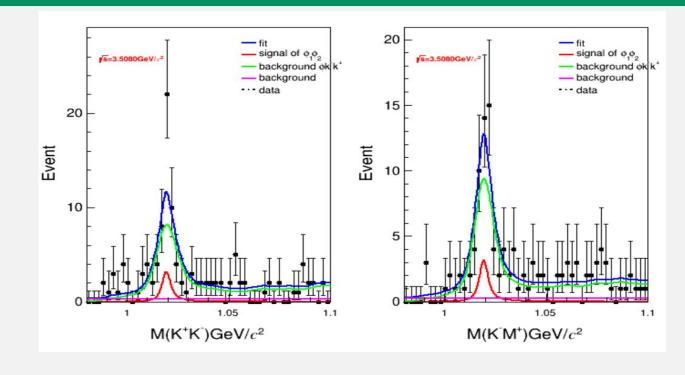
MC and data analysis

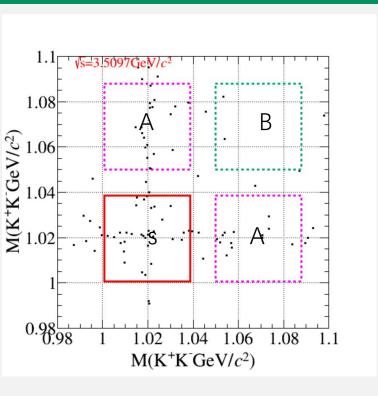


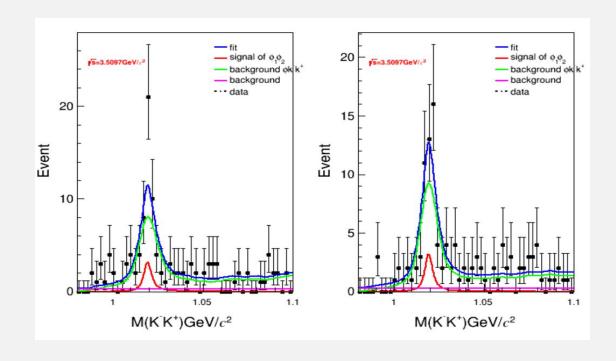
- ϕ_1 <1.1GeV
- φ₂<1.1GeV
- χ²<42

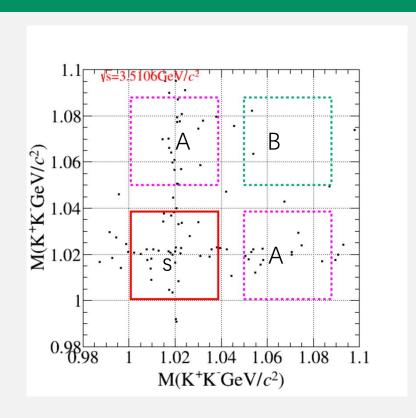


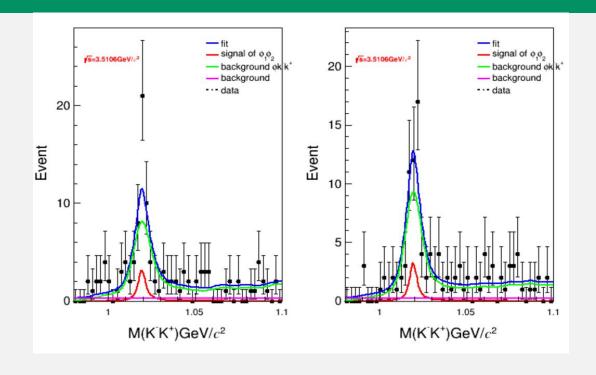
S: Signal regions A and B are sideband regions

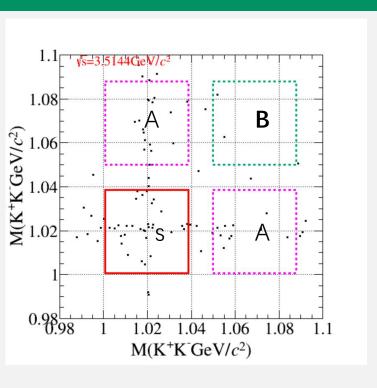

$$S-A+B=7$$


- Black: error bar
- Blue: data fitting results
- Green: Phikk is the background and the number of cases is NBkg1=98.0±12.2
- Pink: 4K is background, and the number of cases is NBkg2=15.4±6.6
- Red dotted line: Number of signal instances is Nsig=11.6±5.3

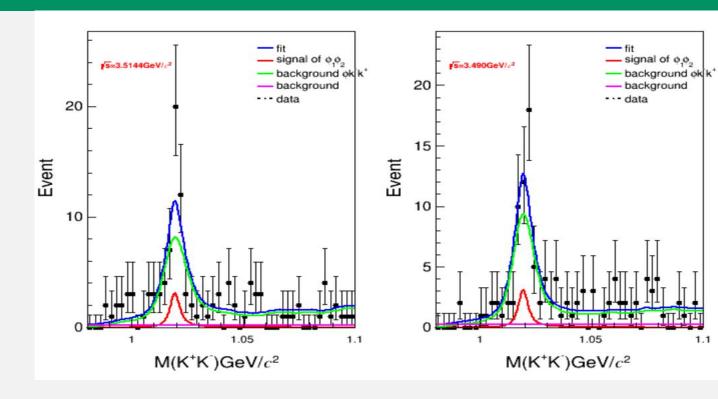

S: Signal regions A and B are sideband regions S=38 A=36 B=3 S-A+B=5


- Black: error bar
- Blue: data fitting results
- Green: Phikk is the background and the number of cases is $NBkg1 = 92.8 \pm 11.9$
- Pink: 4K is background, and the number of cases is $NBkg2 = 14.3 \pm 6.3$
- Red dotted line: Number of signal instances is Nsig $=9.9\pm5.2$ 10


S: Signal regions A and B are sideband regions S=38 A=37 B=3 S-A+B=4


- Black: error bar
- Blue: data fitting results
- Green: Phikk is the background and the number of cases is $NBkg1 = 91.5 \pm 11.8$
- Pink: 4K is background, and the number of cases is NBkg2 =14.6±6.4
- Red dotted line: Number of signal instances is $Nsig = 9.9 \pm 5.2$

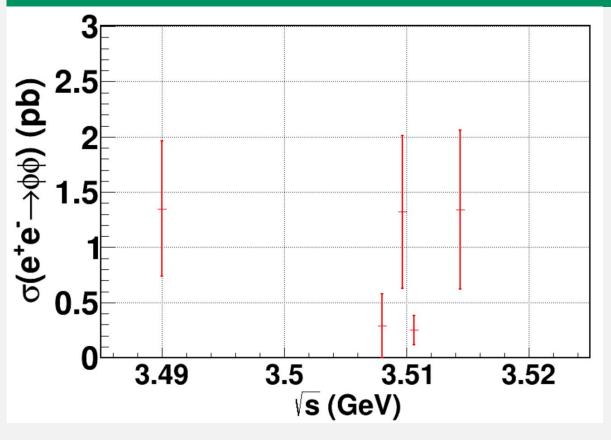
S: Signal regions A and B are sideband regions S=38 A=37 B=3 S-A+B=4



- Black: error bar
- Blue: data fitting results
- Green: Phikk is the background and the number of cases is $NBkg1 = 92.2 \pm 11.8$
- Pink: 4K is background, and the number of cases is $NBkg2 = 12.9 \pm 6.1$
- Red line: Number of signal instances is Nsig =9.8±5.2

S: Signal regions A and B are sideband regions S=37 A=37 B=3

$$S-A+B=3$$


- Black: error bar
- Blue: data fitting results
- Green: Phikk is the background and the number of cases is $NBkg1 = 92.6 \pm 11.8$
- Pink: 4K is background, and the number of cases is NBkg2 = 10.7 ± 5.9
- Red dotted line: Number of signal instances is Nsig = 9.7 ± 5.2

signal fit

$$\sigma^{obs} = \frac{N^{obs}}{l \cdot \varepsilon \cdot B(\mathbf{\phi} \to K^+ K^-) \cdot B(\mathbf{\phi} \to K^+ K^-)}$$

$\sqrt{s}(\text{GeV})$	N ^{obs}	$\pounds_{int}(pb^{-1})$	ε(%)	$B^2(\mathbf{\Phi} \to K^+K^-)$	σ^{obs}
3.4900	11.63±5.27	12.1	0.35	0.24	1.35±0.61
3.5097	9.9 ± 5.2	39.3	0.80	0.24	1.32±0.69
3.5080	9.9 ± 5.2	181.8	0.79	0.24	0.29±0.15
3.5106	9.8 ± 5.2	184.6	0.34	0.24	0.25±0.13
3.5144	9.7 ± 5.2	40.9	0.74	0.24	1.34±0.72

signal fit

$$\sigma^{obs} = \frac{N^{obs}}{l \cdot \varepsilon \cdot B(\mathbf{\phi} \to K^+ K^-) \cdot B(\mathbf{\phi} \to K^+ K^-)}$$

2021-11-23

Next to do

Next to do

$$\triangleright$$
 use $\frac{\mathbf{a} + \mathbf{cos}^2 \theta}{\mathbf{b} - \mathbf{cos}^2 \theta}$, $\mathbf{a} = 1 + \frac{8m_{\phi}^2}{s}$, $\mathbf{b} = 1 + \frac{4m_{\phi}^2}{s^2}$

> Systematic uncertainty.