

Latest Progress in Geant4 Simulation of HCAL

<u>Dejing Du</u>, Yong Liu, Baohua Qi December 8, 2021

Scintillator HCAL: setup in Geant4 simulation

HCAL geometry

- Transverse plane: $108 \times 108 cm^2$
- 60 longitudinal layers, each with
 - Scintillator: 3mm
 - PCB: 2.1mm
 - Absorber (steel): 20mm

Scintillator materials

- Plastic scintillator (polystyrene) as baseline reference
- Scintillating glass: $25SiO_2 30B_2O_3 10Al_2O_3 34Gd_2O_3$: $1Ce^+$

density = 4.94 g/cm3

Note: HCAL with 40 layers in CEPC CDR as baseline. Hereby use 60 layers to evaluate leakage effects

HCAL with scintillating glass

Impact of density for energy resolution

- Birks' constant, energy threshold and timing cut not included
- Incident particle: kaon0L (1-100GeV)

Resolution of Energy

HCAL with scintillating glass

Impact of Gd concentration for energy resolution

- Birks' constant, energy threshold and timing cut not included
- Incident particle: kaon0L (1-100GeV)

Resolution of Energy

 $25SiO_2 - 30B_2O_3 - 10Al_2O_3 - 34Gd_2O_3$: 1Ce⁺

HCAL: Tiles time & energy distribution

- Birks' constant, energy threshold and timing cut not included
- Incident particle: kaon0L and e- (1GeV)

HCAL: Tiles time & energy distribution

- Birks' constant, energy threshold and timing cut not included
- Incident particle: kaon0L and e- (10GeV)

HCAL: Tiles time & energy distribution

- Birks' constant, energy threshold and timing cut not included
- Incident particle: kaon0L and e- (100GeV)

10

Scintillator HCAL: e/π - ratio

Impact of energy threshold for e/π - ratio

- Birks' constant and timing cut not included
- Energy threshold: OMIP, 0.3MIP, 0.5MIP

Scintillator HCAL : e/π - ratio

Impact of timing cut for e/π - ratio

- Birks' constant and energy threshold not included
- Timing Cut: 100ns, 200ns, 500ns, 1µs, 5µs, 10 µs

Part II Cosmic Ray Experiment of Scintillating Glass

Cosmic Ray Experiment of Scintillating Glass

- Sample: #7, ~ 4.5 × 4.5 × 3 mm3
- Coupling of Sample and SiPM: Air

SiPM: single photon

Institute of High Energy Physics Chinese Academy of Sciences

Cosmic Ray Experiment of Scintillating Glass

2021/12/9

Cosmic Ray Experiment of Scintillating Glass

Institute of High Energy Physics Chinese Academy of Sciences

2021/12/9