

Measurement of branching ratios of Higgs hadronic decays

Yanping Huang, Xinchou Lou, Gang Li, Gangcheng Lu, Jinfei Wu

IHEP,CAS

Introduction

- Branch ratios of Higgs hadronic decays : measured in LHC, but limited by the large background.
- CEPC has advantages to perform more precise measurement,
 - Small background
 - Tunable initial energy
- > In the previous study at CEPC, the branch ratios of $H \rightarrow b\bar{b}/c\bar{c}/gg$ is measured with a 3D-fit method. Previous Study
- To improve the measurement and include more decay channels, a machine learning technique and matrix method are introduced in this study.
 - $H \rightarrow b\bar{b}/c\bar{c}/gg/ww^*/zz^*$

Introduction

- ➤ Measurement of decay branching ratios of $H \rightarrow b\bar{b}/c\bar{c}/gg/ww^*/zz^*$ in associated with $z \rightarrow \mu^+\mu^-$ at the CEPC.
- MC samples : e2e2h_bb, e2e2h_cc, e2e2h_gg, e2e2h_ww, e2e2h_zz, zz_sl0mu_down and zz_sl0mu_up

➢For each sample, 60K full simulation events are used.

Pre-selection

➤To select the signal, a simple pre-selection is required:

- $N_{jet} = 2$
- $N_{\mu} = 2$

After the pre-selection, the distributions of some variables are shown:

Pre-selection

- From these distributions, a cut-based method including several variables cannot separate the different channels very well.
- A machine learning technique is introduced to improve the performance.

Particle Flow Network

PFN : Particle Flow Networks is a model architectures designed for learning from collider events.

• p_i : the information of particle i, such as four-momentum, charge, or flavor.

>Advantage

- use all info at particle level,
- remove the impact from jet clustering and e/γ isolation,
- Enlarge the size of input,

Config of PFN

➤Training variables

Energy, momentum, cosθ, φ, PDGID, D0, Z0 for each particle in a jet.

3 layers : 100, 100, 256 nodes 3 layers : 100, 100, 100 nodes

Activation function : ReLU for each dense layer, softmax for output layer

Methodology

>Let's consider a simple example, only $H \to b\overline{b}$ and $H \to c\overline{c}$. $\binom{n_b}{n_c} = \begin{pmatrix} \epsilon_{bb} & \epsilon_{bc} \\ \epsilon_{cb} & \epsilon_{cc} \end{pmatrix} \binom{N_b}{N_c} \qquad n = EN$

- n_i : the observed number of events of i class,
- N_i : the production number of events of i class,
- ϵ_{ij} : the rate of state i reconstructed to be state j.

➢ If we can measure the matrix E, then $N = E^{-1}n$ ➢ The PFN is used to extract the matrix.

- Use full simulation sample, including bb/cc/gg/ww*/zz*, zz_sl0mu_down(label as down) and zz_sl0mu_up(label as up).
- Tiny difference between train and validation on loss.
- From the ROC curve, the separation power of $b\overline{b}$ is highest, zz^* is lowest.

- For the classes of signal, the separation power of $b\overline{b}$ is highest, zz^* is lowest.
- The separation power between background is lower, but the separation power between signal and background is higher.

Performance of PFN

- Show the comparison of true and prediction on the test sample(10% of total MC samples).
- The predictions of cc, bb and gg are better, the difference between predict and true is small.

Performance of PFN

Results

- Use test samples(10% of MC events) to perform the study.
- Scale the MC events according to the cross-section \times integrated lumi(5.6 ab^{-1})

	cī	bb	<i>gg</i>	ZZ	ww	ир	down
n	1272 <u>+</u> 36	21435±1 46	3689 <u>+</u> 61	8822 <u>+</u> 94	11709±3 34	66245±2 57	105853± 325
Ñ	1079 <u>+</u> 33	21389 <u>+</u> 1 46	3177 <u>±</u> 56	14189±1 19	107436± 328	72711±2 70	97784 <u>+</u> 3 13
Ν	1089 <u>+</u> 33	21539 <u>+</u> 1 47	3079 <u>+</u> 55	14430±11 9	108045± 329	72729 <u>+</u> 2 70	98448 <u>+</u> 3 14

- n: observed number of events of each channel,
- \widehat{N} : the true number of events of each channel,
- *N* : the number of events of each channel, calculated from observed number.

Summary

- >Use PFN to classify the hadronic decay channels of Higgs, including $H \rightarrow b\bar{b}/c\bar{c}/gg/ww^*/zz^*$.
- The separation power between background is lower, but the separation power between signal and background is higher.
- Potential improvement with respect to previous study.
 - Good separation power of each class from PFN.
 - Smaller global uncertainty from the matrix method.
- ≻Next to do
 - Include more backgrounds and try to improve the performance of PFN.
 - Extract the branch ratio of Higgs hadronic decay channels
 - Estimate the systematic uncertainty.

Backup

Higgs boson production	$\mu^+\mu^-H$			e^+e^-H		
Higgs boson decay	$H \rightarrow b \bar{b}$	$H \rightarrow c \bar{c}$	$H \rightarrow gg$	$H \rightarrow b \bar{b}$	$H \rightarrow c \bar{c}$	$H \rightarrow gg$
statistic uncertainty	1.1%	10.5%	5.4%	1.6%	14.7%	10.5%
fined heatenand	-0.2%	+4.1%	7.6%	-0.2%	+4.1%	7.6%
fixed background	+0.1%	-4.2%		+0.1%	-4.2%	
	+0.7%	+0.4%	+0.7%	+0.7%	+0.4%	+0.7%
event selection	-0.2%	-1.1%	-1.7%	-0.2%	-1.1%	-1.7%
d	-0.4%	+3.7%	+0.2%	-0.4%	+3.7%	+0.2%
flavor tagging	+0.2%	-5.0%	-0.7%	+0.2%	-5.0%	-0.7%
	+0.7%	+5.5%	+7.6%	+0.7%	+5.5%	+7.6%
combined systematic uncertainty	-0.5%	-6.6%	-7.8%	-0.5%	-6.6%	-7.8%

 $\text{Table 2.} \quad \text{Uncertainties on } \sigma^{b\bar{b}}_{l^+l^-H}, \sigma^{c\bar{c}}_{l^+l^-H} \text{ and } \sigma^{gg}_{l^+l^-H}.$

Pre-selection

Results of fast simulation

➢ Fast simulation sample : only has bb/cc̄/gg/ww*/zz*.
 ➢ Tiny difference at loss between train and validation.
 ➢ From the ROC curve, the separation power of bb is highest, zz* is lowest.

https://github.com/Wujinfei/HiggsHadron-PFNs-gpu.git

Results of fast simulation

 The performance of PFN on fast simulation is good, except the zz* calss.

Comparison between fast and full simulation

- Why is the performance of full simulation worse than fast simulation:
 - ➢Fast simulation has larger statistic than full simulation.
 - >Maybe due to the reconstruction is not perfect.
 - ≻Fewer training epochs of full simulation.
- Possible ways to improve the training performance
 Include more input variables,
 Generate more full simulation samples.