

HCAL with Scintillating Glass: Geant4 simulation and measurements

<u>Dejing Du</u>, Yong Liu, Lishuang Ma, Baohua Qi December 15, 2021

Outline

- Motivations
- Simulation of scintillating glass for HCAL
 - Scintillator HCAL: setup in Geant4 simulation
 - Preliminary performance comparison
 - plastic scintillator
 - scintillating glass
 - Hadronic energy resolution of HCAL with Scintillating Glass
 - density, Gadolinium concentration, energy threshold, timing cut, light yield
- Optical simulation: a single scintillating glass tile
- Cosmic ray measurements of a scintillating glass tile
- Summary

Motivations

- A novel concept of PFA HCAL with heavy scintillating glass tiles
- Major motivations
 - Higher density provides higher energy sampling fraction
 - Certain doping to enhance neutron capture: improve hadronic response
 - More compact HCAL layout (given 4~5 nuclear interaction lengths in depth)
- Geant4 full simulation established to address key issues
 - One model for a full hadronic calorimeter
 - To study hadronic energy resolution of single particles
 - Another model of optical simulation for a single glass tile
 - Essential to guide R&D activities of heavy scintillating glass
 - Key properties: density, components (doping), intrinsic light yield, transmission, emission, decay time, etc.

- Motivations
- Simulation of scintillating glass for HCAL
 - Scintillator HCAL: setup in Geant4 simulation
 - Preliminary performance comparison
 - plastic scintillator
 - scintillating glass
 - Hadronic energy resolution of HCAL with Scintillating Glass
 - density, Gadolinium concentration, energy threshold, timing cut, light yield
- Optical simulation: a single scintillating glass tile
- Cosmic ray measurements of a scintillating glass tile
- Summary

HCAL: setup in Geant4 simulation

HCAL geometry

- Transverse plane: $108 \times 108 cm^2$
- 60 longitudinal layers, each with
 - Scintillator: 3mm
 - PCB: 2.1mm
 - Absorber (steel): 20mm

Scintillator materials

- Plastic scintillator (polystyrene) as baseline reference
- Scintillating glass: $25SiO_2 30B_2O_3 10Al_2O_3 34Gd_2O_3$: $1Ce^+$ density = 4.94 g/cm^3

Note: HCAL with 40 layers in CEPC CDR as baseline. Hereby use 60 layers to evaluate leakage effects

By Sen Qian

HCAL: evaluate leakage effects

- Geometry size
 - Baseline: 108cm×108cm×60layers(~1.5m)
 - Ideal: 540cm×540cm×300layers(~7.5m)
- Incident particle: kaon0L (1-100 GeV)
- The impact of shower leakage to energy resolution in the 60 layer is estimated (~1% level)

HCAL: plastic scintillator vs scintillating glass vs BGO

Energy Resolution

- Preliminary performance comparison
 - Same thickness of sensitive materials: 3mm
 - No energy threshold applied
- Scintillating glass: better hadronic energy resolution in low energy region (<30GeV)
 - Note that majority of hadrons in jets at CEPC are with low energy
- Further issue: constant term
 - To be further understood

of High Energy Physics Chinese Academy of Sciences

Impact of Gd concentration to hadronic energy resolution

- Varying Gadolinium concentration, fixed density
- Incident particle: kaon0L (1-100 GeV)
- Energy threshold and timing cut not included Energy Resolution

Gd concentration=0.5 Gd concentration=1 - 1 <u></u> <u></u>[%) 0.5 #Gd concentration=0.5, $\frac{34.95\%}{\sqrt{E}} \oplus 3.04\%$, χ^2 /ndf=3.49/9 Gd concentration=1.5 Gd concentration=1 - 1 Relative Difference in % 35 #Gd concentration=1, $\frac{33.14\%}{\sqrt{E}} \oplus 4.29\%, \chi^2/ndf=13.61/9$ Gd concentration=2 Gd concentration=1 - 1 30 #Gd concentration=1.5, 35.80% ⊕ 4.84%, χ²/ndf=11.24/9 Reference: Gd concentration=1 25 #Gd concentration=2, $\frac{35.73\%}{\sqrt{E}} \oplus 5.31\%, \chi^2/ndf=22.23/9$ 20 15 10 -0.2 100 E_{beam}(GeV) 20 40 60 80 20 40 60 80 100 E_{beam}(GeV)

- Increasing Gd concentration can improve the constant term, but the Stochastic term remains to be further understood.
- In general, the hadronic energy resolution is insensitive to the Gd concentration.

国科学院高能物理研究所

Institute of High Energy Physics Chinese Academy of Sciences

Baseline reference (Gd concentration = 1) : $25SiO_2 - 30B_2O_3 - 10Al_2O_3 - 34Gd_2O_3$: 1Ce⁺

Impact of energy threshold to hadronic energy resolution

Energy Resolution

 $25SiO_2 - 30B_2O_3 - 10Al_2O_3 - 34Gd_2O_3: 1Ce^+$

- Varying energy thresholds
- Incident particle: kaon0L (1-100 GeV)
- Timing cut not included
- Higher energy threshold leads to worse hadronic energy resolution.

Institute of High Energy Physics Chinese Academy of Sciences

Impact of timing cut to hadronic energy resolution

Energy Resolution

 $25SiO_2-30B_2O_3-10Al_2O_3-34Gd_2O_3{:}\,1Ce^+$

- Varying timing cut
- Incident particle: kaon0L (1-100 GeV)
- Energy threshold not included
- Smaller timing cut leads to worse hadronic energy resolution.

Institute of High Energy Physics Chinese Academy of Sciences

Impact of light yield to hadronic energy resolution

- Incident particle: kaon0L (1-100 GeV)
- Energy threshold and timing cut not included

 $42SiO_2 - 5Al_2O_3 - 22BaF_2 - 9NaF - 3CaF_2 - 3Gd_2O_3 - 9GdF_3 - 7TbF_3$

References: https://doi.org/10.1016/j.jeurceramsoc.2021.05.064

Energy Resolution

Light yeild vs Stochastic Term

- Increasing light yield can not significantly improve hadronic energy resolution.
- Factors affecting hadronic energy resolution
 - Intrinsic hadronic energy fluctuation and sampling fluctuation (dominant)
 - Photon statistics fluctuation(non-dominant)
- Prospect: higher light yield would help achieve lower the energy threshold

By Lishuang Ma

Light yield vs Density

- Incident particle: kaon0L (1-100 GeV)
- Energy threshold and timing cut not included

Light yeild vs Stochastic Term

42*SiO*₂-5*Al*₂*O*₃-22*BaF*₂-9*NaF*-3*CaF*₂-3*Gd*₂*O*₃-9*GdF*₃-7*TbF*₃ References: https://doi.org/10.1016/j.jeurceramsoc.2021.05.064

- When density increases to 7 g/cm³ from 6 g/cm³, the stochastic term only improves <1.5%.
- Considering the constraints of light yield in glass R&D, we initially set the target density as $6 g/cm^3$.

By Lishuang Ma 12

- Motivations
- Simulation of scintillating glass for HCAL
 - Scintillator HCAL: setup in Geant4 simulation
 - Preliminary performance comparison
 - plastic scintillator
 - scintillating glass
 - Hadronic energy resolution of HCAL with Scintillating Glass
 - density, Gadolinium concentration, energy threshold, timing cut, light yield
- Optical simulation: a single scintillating glass tile
- Cosmic ray measurements of a scintillating glass tile
- Summary

Optical simulation: setup in Geant4

- Geometry setup
 - Scintillating glass(4.5×4.5×3.5mm³, ESR wrapping)
 - Coupling agent: Air
 - SiPM(6×6 mm²)
- Properties of scintillating glass
 - Component: $25SiO_2 30B_2O_3 10Al_2O_3 34Gd_2O_3$: $1Ce^+$
 - Density: 4.94 *g*/*cm*³
 - Refractive index: 1.67
 - Transmission: 63%
 - Emission peak: 394 nm
 - Light yield: 881 ph/MeV (Based on the data of the measurements by Zhehao Hua)

Optical simulation: MIP response

• Incident particle: 1 GeV mu- (regard as MIP particle)

- Motivations
- Simulation of scintillating glass for HCAL
 - Scintillator HCAL: setup in Geant4 simulation
 - Preliminary performance comparison
 - plastic scintillator
 - scintillating glass
 - Hadronic energy resolution of HCAL with Scintillating Glass
 - density, Gadolinium concentration, energy threshold, timing cut, light yield
- Optical simulation: a single scintillating glass tile
- Cosmic ray measurements of a scintillating glass tile
- Summary

Cosmic ray measurements : setup

- Scintillating glass: #7
 - $4.5 \times 4.5 \times 3.5 mm^3$, ESR wrapping
- SiPM: S13360-6025PE(HPK)
 - $6 \times 6 mm^2$, 25µm pixel pitch
 - Bias voltage: 57.57V
- Coincidence with two plastic scintillator($1 \times 1 \ cm^2$)

Cosmic ray measurements : typical events

- DUT: scintillating glass cube + SiPM (blue pulses)
- Trigger: 2 sets of plastic scintillator tile + SiPM (red pulses, green pulses)

科學院高能物理研究所

Institute of High Energy Physics Chinese Academy of Sciences

The results of cosmic ray measurements

• Trigger scheme: 3-fold coincidence

Summary

- A novel HCAL concept with high-density scintillating glass
 - To improve hadronic energy resolution, especially in low energy region
- HCAL performance in simulation
 - Increasing density of scintillating glass does not significantly improve energy resolution
 - Hadronic energy resolution also depends on energy threshold and time window
 - Increasing light yield cannot significantly improve hadronic energy resolution
- Studies with a single scintillating glass cube (size in mm)
 - Performed Geant4 optical simulation and cosmic-ray tests
- Plans and prospects
 - Considering the complexity of glass development, we initially target the density of 6 g/cm^3
 - Light yield with a single HCAL tile (size in cm): simulation and measurements
 - Higher light yield would help achieve lower the energy threshold

Backups

HCAL: sampling vs homogeneous

科學院高能物理研究所

Institute of High Energy Physics Chinese Academy of Sciences

Resolution of Energy

2021/12/15

100 E_{beam}(GeV)

80

60

HCAL: Tiles time & energy distribution

- Birks' constant, energy threshold and timing cut not included
- Incident particle: kaon0L and e- (10GeV)

Impact of density to hadronic energy resolution

- Varying scintillating glass density, fixed component
- Incident particle: kaon0L (1-100 GeV)
- Energy threshold and timing cut not included

 $25SiO_2 - 30B_2O_3 - 10Al_2O_3 - 34Gd_2O_3: 1Ce^+$

- Increasing density can improve the constant term, but the Stochastic term remains to be further understood.
- In general, the hadronic energy resolution is insensitive to the density.

國科學院高能物理研究所

Institute of High Energy Physics Chinese Academy of Sciences