

中國科學院為能物招加完施 Institute of High Energy Physics Chinese Academy of Sciences

Measurement of $B^{0}(s) \rightarrow \eta\eta$ at CEPC

Yuexin Wang, Manqi Ruan

Snowmass Discussion, December 24, 2021

Status of B→ηη

Channel	DATA	SCET [1]	QCDF	pQCD	
$B^0 o \eta \eta$	< 1 [2]	$0.69 \pm 0.38 \pm 0.13 \pm 0.58$	$0.32^{+0.13+0.07}_{-0.05-0.06}$ [3]	0.067 [5]	
		$1.0 \pm 0.4 \pm 0.3 \pm 1.4$	$0.16^{+0.03+0.43+0.09+0.10}_{-0.03-0.18-0.03-0.05}$ [4]		
$B^0_s \to \eta \eta$	< 1500 [6]	$7.1 \pm 6.4 \pm 0.2 \pm 0.8$	$10.9^{+6.3+5.7}_{-4.0-4.2}$ [7]	$10.4^{+4.9}_{-2.4}$ [8]	
		$6.4 \pm 6.3 \pm 0.1 \pm 0.7$	-4.0-4.2 t 1	-3.4 []	

Table 1: Experimental mesaurements and theoretical predictions of the branching ratios (in unit of 10^{-6}) of $B \rightarrow \eta \eta$ decays. The soft collinear effective theory (SCET), QCD factorization (QCDF), and perturbative QCD (pQCD) are three common theoretical techniques to deal with the hadronic B-meson decays.

 $BR(B^0 \to \eta\eta) \sim 1 \times 10^{-7}$ $BR(B^0_s \to \eta\eta) \sim 1 \times 10^{-5}$

are used in the following analysis

References

- [1] A.R. Williamson and J. Zupan, Two body B decays with isosinglet final states in SCET, Phys. Rev. D 74 (2006) 014003 [hep-ph/0601214].
- [2] BaBar collaboration, B meson decays to charmless meson pairs containing eta or eta' mesons, <u>Phys. Rev. D 80 (2009) 112002</u> [0907.1743].
- [3] H.-Y. Cheng and C.-K. Chua, Revisiting Charmless Hadronic B(u,d) Decays in QCD Factorization, Phys. Rev. D 80 (2009) 114008 [0909.5229].
- [4] M. Beneke and M. Neubert, QCD factorization for $B \rightarrow PP$ and $B \rightarrow PV$ decays, <u>Nucl. Phys. B 675 (2003) 333 [hep-ph/0308039]</u>.
- [5] Z.-j. Xiao, D.-q. Guo and X.-f. Chen, Branching Ratio and CP Asymmetry of B0 —> eta-(prime) eta- (prime) Decays in the Perturbative QCD Approach, <u>Phys. Rev. D 75 (2007) 014018 [hep-ph/0607219]</u>.

[6] L3 collaboration, Search for neutral charmless B decays at LEP, Phys. Lett. B 363 (1995) 127.

- [7] H.-Y. Cheng and C.-K. Chua, QCD Factorization for Charmless Hadronic B_s Decays Revisited, <u>Phys. Rev. D 80 (2009) 114026 [0910.5237]</u>.
- [8] D.-C. Yan, X. Liu and Z.-J. Xiao, Anatomy of $B_s \rightarrow PP$ decays and effects of the next-to-leading order contributions in the perturbative QCD approach, Nucl. Phys. B 946 (2019) 114705 [1906.01442].

Reconstruction of Eta

- Focus on the di-photon final state: $BR(\eta \rightarrow \gamma \gamma) = (39.41 \pm 0.20)\%$
- Average number of π^0 is significantly larger than that of η in $Z \rightarrow qq$ events

Solution Sector Sector

Z→qq @91.2GeV

Eta Efficiency & Purity vs Energy

MCTruth Level

Eta Pair Distributions

MCTruth Level

Eta Pair Distributions

Event selection

MCTruth Level

$m_{\eta\eta}$ at different B mass resolution

Accuracy

Limitation of the current simple modelling:

- η reconstruction <u>efficiency</u> is constant \rightarrow vs ECAL resolution
- Not consider the impurity caused by the η reconstruction

Summary

Care Construction efficiency and purity are quantified

- based on the pi0 reconstruction (initial max efficiency < 100%)
- Sample: Z→qq@91.2GeV

ECAL Energy Resolution	Max efficiency	Efficiency	Purity
17%/√E⊕1% (CEPC baseline)	25.8%	19.3%	14.2%
3%/√E⊕0.3% (Ref. ECAL from B→2πº)	63.2%	54.4%	52.4%

MCTruth level study

- Event selection
 - Signal efficiency ~75%
 - Background model: exponential
- Simple model of ECAL resolution
 - Characterized as B mass resolution σ_{mB}
 - Background pdf convolve Gaus(0,σ_{mB})
 - Further optimization
 - η reconstruction <u>efficiency</u> as a function of ECAL resolution
 - Model the impurity caused by the η reconstruction

Backup

$B^0_{(s)} o \eta\eta$

$$egin{aligned} N_{B^0 o \eta\eta} &= N_Z imes \mathcal{B}(Z o bar{b}) imes 2 imes ar{f}(b o B_d) imes \mathcal{B}(B^0 o \eta\eta) \ &= 10^{12} imes 15.12\% imes 2 imes 40.7\% imes 1 imes 10^{-7} \ &pprox 12,308 \end{aligned}$$

 $egin{aligned} N_{B^0 o \eta\eta o 4\gamma} &= N_Z imes \mathcal{B}(Z o bar{b}) imes 2 imes f(b o B_d) imes \mathcal{B}(B^0 o \eta\eta) imes \mathcal{B}(\eta o \gamma\gamma)^2 \ &= 10^{12} imes 15.12\% imes 2 imes 40.7\% imes 1 imes 10^{-7} imes 39.41\%^2 \ &pprox 1,912 \end{aligned}$

 $egin{aligned} N_{B^0_s o \eta\eta} &= N_Z imes \mathcal{B}(Z o bar{b}) imes 2 imes ar{f}(b o B_s) imes \mathcal{B}(B^0_s o \eta\eta) \ &= 10^{12} imes 15.12\% imes 2 imes 10.1\% imes 1 imes 10^{-5} \ &pprox 305,424 \end{aligned}$

 $egin{aligned} N_{B^0_s o \eta\eta o 4\gamma} &= N_Z imes \mathcal{B}(Z o bar{b}) imes 2 imes f(b o B_s) imes \mathcal{B}(B^0_s o \eta\eta) imes \mathcal{B}(\eta o \gamma\gamma)^2 \ &= 10^{12} imes 15.12\% imes 2 imes 10.1\% imes 1 imes 10^{-5} imes 39.41\%^2 \ &pprox 47,437 \end{aligned}$

Separation of B⁰ and B⁰s

2σ separation requires B mass resolution σ_{mB} better than 30 MeV.

Dependence of B mass resolution on detector performance

- CEPC baseline single photon angular resolution ~1mrad/√E
- ECAL energy resolution dominates the contribution when $\sigma_{\theta} < 1$ mrad/ \sqrt{E}
- The following analysis only takes ECAL energy resolution into account
- $\sigma_{mB} \sim 30$ MeV requires ECAL energy resolution $\sim 3\%/\sqrt{E \oplus 0.3\%}$

Event Selection

(b) $\theta_{\pi^0\pi^0}$ vs $E_{\pi^0\pi^0}$ in $B^0 \to \pi^0\pi^0$ (left), $B_s^0 \to \pi^0\pi^0$ (middle), and $Z \to q\bar{q}$ (right) events.

Dependence on B mass resolution

with CEPC baseline b-tagging

Dependence on B mass resolution

with CEPC baseline b-tagging

Eta Pair Distributions


```
Bs->2Eta
```

Eta Efficiency & Purity vs Energy

