On η_c and $\eta_c(2S)$ decays

Chang-Zheng Yuan (苑长征)

IHEP, Beijing

The workshop of the B.3 subproject of CRC110 16-18 February 2022 on line

Based on Hongpeng Wang (王宏鹏) & CZY, arXiv:2112.08584

1

The "12% rule" in vector charmonium decays

M. Appelquist and H. D. Politzer, PRL34, 43 (1975)

 $\Gamma_h = |M_h|^2 |\Psi(0)|^2$

$$= (2/9\pi)(\pi^2 - 9)^{\frac{5}{18}} \alpha_s^{3} (\frac{4}{3}\alpha_s)^3 m_{\mathcal{O}'}.$$
(3)

The leptonic width via one photon into $\bar{l}l$ is

$$\Gamma_{l} = |M_{l}|^{2} |\Psi(0)|^{2} = \frac{1}{2} (\frac{2}{3}\alpha)^{2} (\frac{4}{3}\alpha_{s})^{3} m_{\mathcal{C}'}, \qquad (4)$$

where $\alpha \approx \frac{1}{137}$. Although separately these calculations are not trustworthy, the ratio

$$\frac{\Gamma_{l}}{\Gamma_{h}} = \frac{\frac{2}{9}\alpha^{2}}{(2/9\pi)(\pi^{2} - 9)5/\alpha_{s}^{3}}$$
(5)

is independent of wave-function effects.

$$Q^{V} = \frac{B_{\psi(2S) \to X}}{B_{J/\psi \to X}} = \frac{B_{\psi(2S) \to e^{+}e^{-}}}{B_{J/\psi \to e^{+}e^{-}}} = 12\% \qquad \approx 13.3\% \text{ [PDG2021 data]}$$
$$Q^{v} = 13.3\%$$

"12% rule" and " $\rho\pi$ puzzle"

MARK-II

- Violation found by Mark-II, confirmed by BESI at higher sensitivity.
 Extensively studied by BESI/BESII/CLEOc/BESIII
- Dozens of models, none satisfactory

 $\psi' / J/\psi \rightarrow \pi^+\pi^-\pi^0$

Extension of "12% rule" to pseudoscalar charmonia

• Mauro Anselmino, Marco Genovese, and Enrico Predazzi, Phys. Rev. D 44, 1597 (1991),

Kuang-Ta Chao, Yi-Fan Gu, and S.F. Tuan, Commun. Theor. Phys. 25 (1996) 471-478,

In contrast to Anselmino *et al.*, we argue that, unlike the ψ' , J/ψ case (2), the branching ratio relationship for η'_c and η_c to a light hadronic channel h is

$$\frac{\mathrm{BR}\left(\eta_{c}^{\prime} \to h\right)}{\mathrm{BR}\left(\eta_{c} \to h\right)} \approx 1. \qquad \mathbf{Q}^{\mathsf{P}} = \mathbf{1}$$
(8)

• Qian Wang, Xiao-Hai Liu, and Qiang Zhao, Physics Letters B 711 (2012) 364–370,

$$R_{\eta_c\eta_c'} \equiv \frac{BR(\eta_c' \to 2g)}{BR(\eta_c \to 2g)} = \frac{BR(\eta_c' \to \gamma\gamma)}{BR(\eta_c \to \gamma\gamma)}. \qquad \mathbf{Q}^{\mathsf{P}} = 1.18 \pm 0.81 \quad [\mathsf{PDG2021}]$$

Experimental data [PDG2021]

	Mode	Fraction (Γ_i/Γ) Confidence lev	el η_C(25)	DECAY MODES	
	n (15) DECA	MODES	Mode	Fraction (Γ_i/Γ) Confide	nce level
$ \Gamma_1 \Gamma_2 \Gamma_3 \Gamma_4 \Gamma_5 \Gamma_{27} \Gamma_{28} \Gamma_{29} \Gamma_{30} \Gamma_{31} \Gamma_{32} \Gamma_{32} $	$\eta_{c}(1S) \text{ DECA}$ $\eta'(958) \pi \pi$ $\rho \rho$ $K^{*}(892)^{0} K^{-} \pi^{+} + \text{ c.c.}$ $K^{*}(892) \overline{K}^{*}(892)$ $K^{*}(892)^{0} \overline{K}^{*}(892)^{0} \pi^{+} \pi^{-}$ $K\overline{K}\pi$ $K\overline{K}\eta$ $\eta \pi^{+} \pi^{-}$ $\eta 2(\pi^{+} \pi^{-})$ $K^{+} K^{-} \pi^{+} \pi^{-} \pi^{0}$ $K^{0} K^{-} \pi^{+} \pi^{-} \pi^{+} + c c$	Y MODES (4.1 ±1.7) % (1.8 ±0.5) % (2.0 ±0.7) % (6.9 ±1.3) × 10 ⁻³ (1.1 ±0.5) % (7.3 ±0.4) % (1.36±0.15) % (1.7 ±0.6) % (4.4 ±1.6) % (6.6 ±1.1) × 10 ⁻³ (3.5 ±0.6) %	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Praction (1 $_{i}$ /1) Confide not seen (1.9±1.2) % (5 ±4) × 10 ⁻³ not seen not seen not seen not seen (1.4±1.0) % not seen seen not seen	nce level
Γ 33 Γ 34 Γ 35 Γ 36 Γ 37 Γ 38 Γ 39 Γ 40 Γ 41	$ \begin{array}{l} K^{+}K^{-}\pi^{+}\pi^{-}\pi^{+}+c.c.\\ K^{+}K^{-}2(\pi^{+}\pi^{-})\\ 2(K^{+}K^{-})\\ \pi^{+}\pi^{-}\pi^{0}\\ \pi^{+}\pi^{-}\pi^{0}\\ 2(\pi^{+}\pi^{-})\\ 2(\pi^{+}\pi^{-}\pi^{0})\\ 3(\pi^{+}\pi^{-})\\ p\overline{p}\\ p\overline{p}\\ p\overline{p}\\ \pi^{0}\end{array} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccc} \Gamma_{12} & 2\pi & 2\pi \\ \Gamma_{13} & \phi \phi \\ \Gamma_{14} & p \overline{p} \\ \Gamma_{15} & p \overline{p} \pi^{+} \pi^{-} \\ \Gamma_{16} & \gamma \gamma \\ \Gamma_{17} & \gamma J/\psi(1S) \\ \Gamma_{18} & \pi^{+} \pi^{-} \eta \\ \Gamma_{19} & \pi^{+} \pi^{-} \eta' \\ \Gamma_{20} & \pi^{+} \pi^{-} \eta_{c}(1S) \end{array} $	not seen not seen seen $(1.9\pm1.3)\times10^{-4}$ < 1.4 % not seen not seen < 25 %	90% 90%
Γ ₄₃ Γ ₄₄ Γ ₄₅ Γ ₄₆ Γ ₄₇ Γ ₄₈	$ \begin{array}{l} \overline{A}\overline{A}\\ \overline{A}\\ \overline{K}^{+}\overline{p}A + \text{c.c.}\\ \overline{A}(1520)A + \text{c.c.}\\ \overline{\Sigma}^{+}\overline{\Sigma}^{-}\\ \overline{\Xi}^{-}\overline{\Xi}^{+}\\ \pi^{+}\pi^{-}p\overline{p}\end{array} $	$(5.3 \pm 1.3) \times 10^{-3}$ $(1.06 \pm 0.23) \times 10^{-3}$ $(2.5 \pm 0.4) \times 10^{-3}$ $(3.1 \pm 1.3) \times 10^{-3}$ $(2.1 \pm 0.6) \times 10^{-3}$ $(9.0 \pm 2.6) \times 10^{-4}$ $(5.3 \pm 2.1) \times 10^{-3}$	PDG only listed a few mo Experimental measurem Q ^P was not calculated fo	odes with large errors in BFs. Tents were not used properly or any mode. → Let's do it	5

Data on η_c & $\eta_c(2S)$ production and decays

Usually both $\eta_c(2S) \& \eta_c$ are measured in the same analysis, many systematic bias cancels out.

Data on $\eta_c \& \eta_c(2S)$ production and decays

ents/10

- Data from J/ $\psi \rightarrow \gamma \eta_c$ are not used [BES, DM2, MK3, 2CBAL, ...]
 - Interference with non- η_c amplitude not treated properly
 - Strong model dependence in $\eta_{\rm c}$ line shape
 - Early experiments used wrong (too narrow) η_c width

FIG. 2. The (black) solid line is the fit to the photon spectrum in exclusive $J/\psi \rightarrow \gamma \eta_c \rightarrow \gamma X$ decays using the unsubtracted pNRQCD line shape of Eq. (3) (a) and using the subtracted pNRQCD line shape of Eq. (6) (b). Experimental data points are taken from Ref. [7].

	m_{η_c} (MeV)	Γ_{η_c} (MeV)	$\mathcal{B}_{1S}^{\mathrm{exp}}$ (%)
pNRQCD	2985.8 ± 0.6	29.7 ± 1.7	(3.86 ± 0.33)
pNRQCD _{sub}	2985.8 ± 0.6	29.7 ± 1.7	(2.17 ± 0.18)
CLEO	2982.2 ± 0.6	31.5 ± 1.5	$(1.98 \pm 0.09 \pm 0.30)$
KEDR	$2983.5 \pm 1.4^{+1.6}_{-3.6}$	$27.2 \pm 3.1^{+5.4}_{-2.6}$	(3.40 ± 0.33)

BES Collaboration / Physics Letters B 578 (2004) 16-22

Fig. 1. Invariant mass distributions in the η_c region (a) $m_{K^+K^-\pi^+\pi^-}$, (b) $m_{\pi^+\pi^-\pi^+\pi^-}$, (c) $m_{K^\pm K^0_S\pi^\pm}$, (d) $m_{\phi\phi}$ and (e) $m_{P\bar{P}}$. The histograms correspond to the data; the curves are the fit result.

Global analysis to extract $\eta_c \& \eta_c(2S)$ decay BFs

- Measurements used in the analysis
 - all measured $\eta_{c}(\text{2S})$ decay modes & corresponding η_{c} decay modes
 - A few additional modes with large η_{c} decay BFs
 - $\eta_c \& \eta_c$ (2S) widths for $\Gamma_{\gamma\gamma}$ determination
- 97 input data from the AMY, BaBar, Belle, BESIII, CLEO, DELPHI, E760, E835, and LHCb experiments
- 29 free parameters
- Least square fit assuming Gaussian errors

$$\chi^{2} = \sum_{i=1}^{97} \frac{(xi - \hat{xi})^{2}}{\sigma_{xi}^{2}}$$

TABLE III: Data used in the analysis: absolute branching fractions and the ratios of the branching fractions for η_c and $\eta_c(2S)$.

Index	quantity	Value	Experiment
	Branching fraction	(%)	
1	$\mathcal{B}(\eta_c \to K^+ K^- \pi^0)$	$1.15 \pm 0.12 \pm 0.10$	BESIII [29]
2	$\mathcal{B}(\eta_c \to K^0_S K^{\pm} \pi^{\mp})$	$2.60 \pm 0.21 \pm 0.20$	BESIII [<u>29</u>]
3	$\mathcal{B}(\eta_c \to p\bar{p})$	$0.120 \pm 0.026 \pm 0.015$	BESIII [<u>29</u>]
4	$\mathcal{B}(\eta_c \to 2(\pi^+\pi^-\pi^0))$	$15.3 \pm 1.8 \pm 1.8$	BESIII [<u>29</u>]
5	$\mathcal{B}(B^+ \to \eta_c K^+)$	$0.120 \pm 0.008 \pm 0.007$	Belle [<u>30</u>]
6	$\mathcal{B}(B^+ \to \eta_c K^+)$	$0.096 \pm 0.012 \pm 0.006$	BaBar [<u>31</u>]
7	$\mathcal{B}(B^+ \to \eta_c(2S)K^+)$	$0.048 \pm 0.011 \pm 0.003$	Belle [<u>30</u>]
8	$\mathcal{B}(B^+ \to \eta_c(2S)K^+)$	$0.035 \pm 0.017 \pm 0.005$	BaBar [<u>31</u>]
	Ratio of the branching fractions		
9	$\frac{\mathcal{B}(\eta_c \to \phi\phi)}{\mathcal{B}(\eta_c \to p\bar{p})}$	$1.79 \pm 0.14 \pm 0.32$	LHCb [<u>32</u>]
10	$\frac{\dot{\mathcal{B}}(\eta_c \to \phi \phi)}{\mathcal{B}(n_c \to K\bar{K}\pi)}$	$0.032^{+0.014}_{-0.010} \pm 0.009$	Belle [<u>33</u>]
11	$\frac{\mathcal{B}(\eta_c \to K^+ K^- \eta)}{\mathcal{B}(\eta_c \to K^+ K^- \pi^0)}$	$0.571 \pm 0.025 \pm 0.051$	BaBar [<u>34]</u>
12	$\frac{\mathcal{B}(\eta_c \to \phi K^+ K^-)}{\mathcal{B}(\eta_c \to K\bar{K}\pi)}$	$0.052^{+0.016}_{-0.014}\pm0.014$	Belle [<u>33</u>]
13	$\frac{\mathcal{B}(\eta_c \to 2(K^+ K^-))}{\mathcal{B}(\eta_c \to K \bar{K} \pi))}$	$0.026^{+0.009}_{-0.007}\pm0.007$	Belle [<u>33</u>]
14	$\frac{\mathcal{B}(\eta_c(2S) \to K^+ K^- \eta)}{\mathcal{B}(\eta_c(2S) \to K^+ K^- \pi^0)}$	$0.82 \pm 0.21 \pm 0.27$	Belle [<u>34</u>]
15	$\frac{\mathcal{B}(\eta_c(2S) \to K\bar{K}\pi) \cdot \mathcal{B}(B^+ \to \eta_c(2S)K^+)}{\mathcal{B}(\eta_c \to K\bar{K}\pi) \cdot \mathcal{B}(B^+ \to \eta_c K^+)}$	$0.096^{+0.020}_{-0.019} \pm 0.025$	BaBar [<u>35</u>]
16	$\frac{\mathcal{B}(\eta_c(2S)\to K^0_S K^{\pm}\pi^{\mp})\cdot\Gamma_{\eta_c(2S)\to\gamma\gamma}}{\mathcal{B}(\eta_c\to K^0_S K^{\pm}\pi^{\mp})\cdot\Gamma_{\eta_c\to\gamma\gamma}}$	$0.18 \pm 0.05 \pm 0.02$	CLEO [<u>36]</u>

TABLE IV: Data used in the analysis: product branching fractions measured in B decays and charmonium decays.

Index	quantity	Value ($\times 10^{-6}$)	Experiment
17	$\mathcal{B}(\eta_c \to p\bar{p}) \cdot \mathcal{B}(\psi(2S) \to \pi^0 h_c \to \pi^0 \gamma \eta_c)$	$0.65 \pm 0.19 \pm 0.10$	BESIII [<u>37</u>]
18	$\mathcal{B}(\eta_c \to p\bar{p}) \cdot \mathcal{B}(\eta_c \to \gamma\gamma)$	$0.224^{+0.038}_{-0.037} \pm 0.020$	E835 [<u>38]</u>
19	$\mathcal{B}(\eta_c \to p\bar{p}) \cdot \mathcal{B}(\eta_c \to \gamma\gamma)$	$0.336\substack{+0.080\\-0.070}$	E760 [<u>39]</u>
20	$\mathcal{B}(\eta_c \to p\bar{p}) \cdot \mathcal{B}(B^+ \to \eta_c K^+)$	$1.64 \pm 0.41^{+0.17}_{-0.24}$	Belle [<u>40]</u>
21	$\mathcal{B}(\eta_c \to p\bar{p}) \cdot \mathcal{B}(B^0 \to \eta_c K^0)$	$1.79 \pm 0.68^{+0.19}_{-0.25}$	Belle [<u>40</u>]
22	$\mathcal{B}(\eta_c \to p\bar{p}) \cdot \mathcal{B}(B^+ \to \eta_c K^+)$	$1.8^{+0.3}_{-0.2} \pm 0.2$	BaBar [<u>41</u>]
23	$\mathcal{B}(\eta_c \to p\bar{p}) \cdot \mathcal{B}(B^+ \to \eta_c K^+)$	$1.42 \pm 0.11^{+0.16}_{-0.20}$	Belle [<u>42</u>]
24	$\mathcal{B}(\eta_c \to \gamma\gamma) \cdot \mathcal{B}(B^+ \to \eta_c K^+)$	$0.22^{+0.09}_{-0.07}{}^{+0.04}_{-0.02}$	Belle [<u>43</u>]
25	$\mathcal{B}(\eta_c \to \phi\phi) \cdot \mathcal{B}(B^+ \to \eta_c K^+)$	$4.7 \pm 1.2 \pm 0.5$	BaBar [<u>44</u>]
26	$\mathcal{B}(\eta_c \to \phi\phi) \cdot \mathcal{B}(B^0 \to \eta_c K^0)$	$2.4\pm1.4\pm0.3$	BaBar [<u>44</u>]
27	$\mathcal{B}(\eta_c \to K\bar{K}\pi) \cdot \mathcal{B}(B^+ \to \eta_c K^+)$	$74.0 \pm 5.0 \pm 7.0$	BaBar [<u>44</u>]
28	$\mathcal{B}(\eta_c \to K\bar{K}\pi) \cdot \mathcal{B}(B^0 \to \eta_c K^0)$	$64.8 \pm 8.5 \pm 7.1$	BaBar [<u>44]</u>
29	$\mathcal{B}(\eta_c \to K^+ K^- \pi^0) \cdot \mathcal{B}(\psi(2S) \to \pi^0 h_c \to \pi^0 \gamma \eta_c)$	$4.54 \pm 0.76 \pm 0.48$	BESIII [<u>37</u>]
30	$\mathcal{B}(\eta_c \to K^+ K^- \pi^0) \cdot \mathcal{B}(B^+ \to \eta_c K^+)$	$11.4 \pm 2.5^{+1.1}_{-1.8}$	Belle [<u>40</u>]
31	$\mathcal{B}(\eta_c \to K^+ K^- \pi^0) \cdot \mathcal{B}(B^0 \to \eta_c K^0)$	$16.6 \pm 5.0 \pm 1.8$	Belle [<u>40</u>]
32	$\mathcal{B}(\eta_c \to K_S^0 K^{\pm} \pi^{\mp}) \cdot \mathcal{B}(\psi(2S) \to \pi^0 h_c \to \pi^0 \gamma \eta_c)$	$11.35 \pm 1.25 \pm 1.50$	BESIII [<u>37</u>]
33	$\mathcal{B}(\eta_c \to K_S^0 K^{\pm} \pi^{\mp}) \cdot \mathcal{B}(B^+ \to \eta_c K^+)$	$24.0 \pm 1.2^{+2.1}_{-2.0}$	Belle [<u>45</u>]
34	$\mathcal{B}(\eta_c \to K_S^0 K^{\pm} \pi^{\mp}) \cdot \mathcal{B}(B^0 \to \eta_c K^0)$	$20.1 \pm 4.7^{+3.0}_{-4.5}$	Belle [<u>40</u>]
35	$\mathcal{B}(\eta_c \to \pi^+ \pi^- \eta) \cdot \mathcal{B}(\psi(2S) \to \pi^0 h_c \to \pi^0 \gamma \eta_c)$	$7.22 \pm 1.47 \pm 1.11$	BESIII [<u>37</u>]

36	$\mathcal{B}(\eta_c \to K^+ K^- \eta) \cdot \mathcal{B}(\psi(2S) \to \pi^0 h_c \to \pi^0 \gamma \eta_c)$	$2.11 \pm 1.01 \pm 0.32$	BESIII [<u>37</u>]
37	$\mathcal{B}(\eta_c \to 2(\pi^+\pi^-)) \cdot \mathcal{B}(\psi(2S) \to \pi^0 h_c \to \pi^0 \gamma \eta_c)$	$7.51 \pm 0.85 \pm 1.11$	BESIII [<u>37</u>]
38	$\mathcal{B}(\eta_c \to 2(K^+K^-)) \cdot \mathcal{B}(\psi(2S) \to \pi^0 h_c \to \pi^0 \gamma \eta_c)$	$0.94 \pm 0.37 \pm 0.14$	BESIII [<u>37</u>]
39	$\mathcal{B}(\eta_c \to 2(K^+K^-)) \cdot \mathcal{B}(B^+ \to \eta_c K^+)$	$2.0\pm0.6\pm0.4$	BaBar [<u>44</u>]
40	$\mathcal{B}(\eta_c \to 2(K^+K^-)) \cdot \mathcal{B}(B^0 \to \eta_c K^0)$	$0.9\pm0.9\pm0.4$	BaBar [<u>44</u>]
41	$\mathcal{B}(\eta_c \to \pi^+ \pi^- p \bar{p}) \cdot \mathcal{B}(B^+ \to \eta_c K^+)$	$3.94_{-0.39}^{+0.41}{}_{-0.18}^{+0.22}$	Belle [<u>46</u>]
42	$\mathcal{B}(\eta_c \to \pi^+ \pi^- p\bar{p}) \cdot \mathcal{B}(B^0 \to \eta_c K^0_S)$	$1.90^{+0.32}_{-0.29} {}^{+0.13}_{-0.47}$	Belle [<u>46</u>]
43	$\mathcal{B}(\eta_c \to \pi^+ \pi^- p \bar{p}) \cdot \mathcal{B}(\psi(2S) \to \pi^0 h_c \to \pi^0 \gamma \eta_c)$	$2.30 \pm 0.65 \pm 0.36$	BESIII [<u>37</u>]
44	$\mathcal{B}(\eta_c \to K^+ K^- \pi^+ \pi^-) \cdot \mathcal{B}(\psi(2S) \to \pi^0 h_c \to \pi^0 \gamma \eta_c)$	$4.16 \pm 0.76 \pm 0.59$	BESIII [<u>37</u>]
45	$\mathcal{B}(\eta_c \to K^0_S K^{\pm} \pi^{\mp} \pi^+ \pi^-) \cdot \mathcal{B}(\psi(2S) \to \pi^0 h_c \to \pi^0 \gamma \eta_c)$	$12.01 \pm 2.22 \pm 2.04$	BESIII [<u>37</u>]
46	$\mathcal{B}(\eta_c \to 2(\pi^+\pi^-\pi^0)) \cdot \mathcal{B}(\psi(2S) \to \pi^0 h_c \to \pi^0 \gamma \eta_c)$	$75.13 \pm 7.42 \pm 9.99$	BESIII [<u>37</u>]
47	$\mathcal{B}(\eta_c(2S) \to p\bar{p}) \cdot \mathcal{B}(B^+ \to \eta_c(2S)K^+)$	$0.0342 \pm 0.0071 \pm 0.0021$	LHCb [<u>47</u>]
48	$\mathcal{B}(\eta_c(2S) \to K\bar{K}\pi) \cdot \mathcal{B}(\psi(2S) \to \gamma\eta_c(2S))$	$13.0 \pm 2.0 \pm 3.0$	BESIII [<u>48</u>]
49	$\mathcal{B}(\eta_c(2S) \to K^0_S K^{\pm} \pi^{\mp}) \cdot \mathcal{B}(B^+ \to \eta_c(2S) K^+)$	$3.1\pm0.8\pm0.2$	Belle [<u>45</u>]
50	$\mathcal{B}(\eta_c(2S) \to \pi^+ \pi^- p\bar{p}) \cdot \mathcal{B}(B^+ \to \eta_c(2S)K^+)$	$1.12^{+0.18}_{-0.16} {}^{+0.05}_{-0.07}$	Belle [<u>46</u>]
51	$\mathcal{B}(\eta_c(2S) \to \pi^+ \pi^- p\bar{p}) \cdot \mathcal{B}(B^0 \to \eta_c(2S)K^0_S)$	$0.42^{+0.14}_{-0.12} \pm 0.03$	Belle [<u>46</u>]
52	$\mathcal{B}(\eta_c(2S) \to K^0_S K^{\pm} \pi^{\mp} \pi^{+} \pi^{-}) \cdot \mathcal{B}(\psi(2S) \to \gamma \eta_c(2S))$	$7.03 \pm 2.10 \pm 0.70$	BESIII [<u>49</u>]

TABLE V: Data used in the analysis: product of $\gamma\gamma$ partial width and branching fraction of η_c and $\eta_c(2S)$ decays measured in two-photon processes.

Index	quantity	Value (eV)	Experiment
53	$\mathcal{B}(\eta_c \to \phi\phi) \cdot \Gamma_{\eta_c \to \gamma\gamma}$	$7.75 \pm 0.66 \pm 0.62$	Belle [50]
54	$\mathcal{B}(\eta_c \to \phi\phi) \cdot \Gamma_{\eta_c \to \gamma\gamma}$	$6.8\pm1.2\pm1.3$	Belle [<u>19</u>]
55	$\mathcal{B}(\eta_c \to p\bar{p}) \cdot \Gamma_{\eta_c \to \gamma\gamma}$	$7.20 \pm 1.53^{+0.67}_{-0.75}$	Belle [<u>51</u>]
56	$\mathcal{B}(\eta_c \to K\bar{K}\pi) \cdot \Gamma_{\eta_c \to \gamma\gamma}$	$386\pm8\pm21$	BaBar [<u>52</u>]
57	$\mathcal{B}(\eta_c \to K\bar{K}\pi) \cdot \Gamma_{\eta_c \to \gamma\gamma}$	$374 \pm 9 \pm 31$	BaBar [<u>53</u>]
58	$\mathcal{B}(\eta_c \to K\bar{K}\pi) \cdot \Gamma_{\eta_c \to \gamma\gamma}$	$600 \pm 120 \pm 90$	DELPHI [<u>17</u>]
59	$\mathcal{B}(\eta_c \to K^0_S K^{\pm} \pi^{\mp}) \cdot \Gamma_{\eta_c \to \gamma\gamma}$	$490 \pm 290 \pm 90$	AMY [<u>54</u>]
60	$\mathcal{B}(\eta_c \to K^0_S K^{\pm} \pi^{\mp}) \cdot \Gamma_{\eta_c \to \gamma\gamma}$	$142 \pm 4 \pm 14$	Belle [<u>55</u>]
61	$\mathcal{B}(\eta_c \to \pi^+ \pi^- \eta') \cdot \Gamma_{\eta_c \to \gamma\gamma}$	$65.4 \pm 2.6 \pm 7.8$	Belle [<u>56</u>]
62	$\mathcal{B}(\eta_c \to 2(\pi^+\pi^-)) \cdot \Gamma_{\eta_c \to \gamma\gamma}$	$40.7 \pm 3.7 \pm 5.3$	Belle [<u>19</u>]
63	$\mathcal{B}(\eta_c \to K^+ K^- \pi^+ \pi^-) \cdot \Gamma_{\eta_c \to \gamma\gamma}$	$25.7 \pm 3.2 \pm 4.9$	Belle [<u>19</u>]
64	$\mathcal{B}(\eta_c \to K^+ K^- \pi^+ \pi^-) \cdot \Gamma_{\eta_c \to \gamma\gamma}$	$280 \pm 100 \pm 60$	DELPHI [<u>17</u>]
65	$\mathcal{B}(\eta_c \to 2(K^+K^-)) \cdot \Gamma_{\eta_c \to \gamma\gamma}$	$5.6\pm1.1\pm1.6$	Belle [<u>19</u>]
66	$\mathcal{B}(\eta_c \to 2(K^+K^-)) \cdot \Gamma_{\eta_c \to \gamma\gamma}$	$350\pm90\pm60$	DELPHI [<u>17</u>]
67	$\mathcal{B}(\eta_c \to K^+ K^- \pi^+ \pi^- \pi^0) \cdot \Gamma_{\eta_c \to \gamma\gamma}$	$190\pm 6\pm 28$	BaBar [<u>52]</u>
68	$\mathcal{B}(\eta_c(2S) \to K\bar{K}\pi) \cdot \Gamma_{\eta_c(2S) \to \gamma\gamma}$	$41 \pm 4 \pm 6$	BaBar [<u>52</u>]
69	$\mathcal{B}(\eta_c(2S) \to K^0_S K^{\pm} \pi^{\mp}) \cdot \Gamma_{\eta_c(2S) \to \gamma\gamma}$	$11.2 \pm 2.4 \pm 2.7$	Belle [<u>55</u>]
70	$\mathcal{B}(\eta_c(2S) \to \pi^+ \pi^- \eta') \cdot \Gamma_{\eta_c(2S) \to \gamma\gamma}$	$5.6^{+1.2}_{-1.1} \pm 1.1$	Belle [<u>56</u>]
71	$\mathcal{B}(\eta_c(2S) \to K^+ K^- \pi^+ \pi^- \pi^0) \cdot \Gamma_{\eta_c(2S) \to \gamma\gamma}$	$30 \pm 6 \pm 5$	BaBar [<u>52</u>]

 η_c width

Index	Process	Width (MeV)	Experiment
72	$\gamma\gamma \to \eta_c, \eta_c \to \eta' \pi^+ \pi^-$	$30.8^{+2.3}_{-2.2} \pm 2.9$	Belle [<u>56</u>]
73	$\gamma\gamma \to \eta_c, \eta_c \to K^+ K^- \eta$	$34.8 \pm 3.1 \pm 4.0$	BaBar [<u>34</u>]
74	$\gamma\gamma \to \eta_c, \eta_c \to K^+ K^- \pi^0$	$25.2 \pm 2.6 \pm 2.4$	BaBar [<u>34]</u>
75	$\gamma\gamma \to \eta_c, \eta_c \to K^0_S K^{\pm} \pi^{\mp}$	$32.1 \pm 1.1 \pm 1.3$	BaBar [<u>52</u>]
76	$\gamma\gamma \to \eta_c, \eta_c \to K^0_S K^{\pm} \pi^{\mp}$	$24.8 \pm 3.4 \pm 3.5$	CLEO [<u>36</u>]
77	$\gamma\gamma \to \eta_c, \eta_c \to K^0_S K^{\pm} \pi^{\mp}$	$36.6 \pm 1.5 \pm 2.0$	Belle [<u>55</u>]
78	$\gamma\gamma\gamma^* \to \eta_c, \eta_c \to K^0_S K^{\pm} \pi^{\mp}$	$31.7 \pm 1.2 \pm 0.8$	BaBar [<u>53]</u>
79	$\gamma\gamma \to \eta_c, \eta_c \to K^+ K^- \pi^+ \pi^- \pi^0$	$36.2 \pm 2.8 \pm 3.0$	BaBar [<u>52]</u>
80	$\gamma\gamma \rightarrow \eta_c, \eta_c \rightarrow hadrons$	$28.1 \pm 3.2 \pm 2.2$	Belle [<u>19</u>]
81	$B^+ \to \eta_c K^+, \eta_c \to p\bar{p}$	$34.0 \pm 1.9 \pm 1.3$	LHCb [<u>47</u>]
82	$B^+ \to \eta_c K^+, \eta_c \to p\bar{p}$	$48^{+8}_{-7} \pm 5$	Belle [<u>42</u>]
83	$B^+ \to \eta_c K^+, \eta_c \to \Lambda \bar{\Lambda}$	$40 \pm 19 \pm 5$	Belle [<u>42</u>]
84	$B^+ \to \eta_c K^+, \eta_c \to K^0_S K^\pm \pi^\mp$	$35.4 \pm 3.6^{+3.0}_{-2.1}$	Belle [<u>45</u>]
85	$B \to \eta_c K^{(*)}, \eta_c \to K \bar{K} \pi$	$36.3^{+3.7}_{-3.6} \pm 4.4$	BaBar [<u>35</u>]
86	$b \to \eta_c X, \eta_c \to \phi \phi$	$31.4 \pm 3.5 \pm 2.0$	LHCb [<u>32</u>]
87	$b \to \eta_c X, \eta_c \to p\bar{p}$	$25.8 \pm 5.2 \pm 1.9$	LHCb [<u>57]</u>
88	$p\bar{p} \rightarrow \eta_c, \eta_c \rightarrow \gamma\gamma$	$20.4^{+7.7}_{-6.7} \pm 2.0$	E835 [<u>38</u>]
89	$p\bar{p} \rightarrow \eta_c, \eta_c \rightarrow \gamma\gamma$	$23.9^{+12.6}_{-7.1}$	E760 [<u>39</u>]
90	$\psi(2S) \to \pi^0 h_c \to \pi^0 \gamma \eta_c, \eta_c \to hadrons$	$32.0 \pm 1.2 \pm 1.0$	BESIII [<u>58</u>]
91	$\psi(2S) \to \pi^0 h_c \to \pi^0 \gamma \eta_c, \eta_c \to hadrons$	$36.4 \pm 3.2 \pm 1.7$	BESIII [<u>58</u>]

η_{c} (2S) width

92	$\gamma\gamma \to \eta_c(2S), \eta_c(2S) \to K^0_S K^{\pm} \pi^{\mp}$	$13.4 \pm 4.6 \pm 3.2$	BaBar [<u>52</u>]
93	$\gamma\gamma \to \eta_c(2S), \eta_c(2S) \to K^0_S K^{\pm} \pi^{\mp}$	$6.3 \pm 12.4 \pm 4.0$	CLEO [<u>36</u>]
94	$\gamma\gamma \to \eta_c(2S), \eta_c(2S) \to K^0_S K^{\pm} \pi^{\mp}$	$19.1 \pm 6.9 \pm 6.0$	Belle [<u>55</u>]
95	$B^+ \to \eta_c(2S)K^+, \eta_c(2S) \to K^0_S K^\pm \pi^\mp$	$41.0 \pm 12.0^{+6.4}_{-10.9}$	Belle [<u>45</u>]
96	$\psi(2S) \to \gamma \eta_c(2S), \eta_c(2S) \to K \bar{K} \pi$	$16.9 \pm 6.4 \pm 4.8$	BESIII [<u>48</u>]
97	$\psi(2S) \rightarrow \gamma \eta_c(2S), \eta_c(2S) \rightarrow K^0_S K^{\pm} \pi^{\mp} \pi^+ \pi^-$	$9.9 \pm 4.8 \pm 2.9$	BESIII [<u>49</u>]

Fit results (hadronic decays)

• χ^2 /ndf=86/68, C.L.=5.7% \rightarrow reasonable fit

decay mode (h)	$\mathcal{B}(\eta_c \to h) \ (\%)$	$\mathcal{B}(\eta_c(2S) \to h) \ (\%)$	Q_h^P
$p\bar{p}$	0.136 ± 0.012	$0.0077^{+0.0028}_{-0.0021}$	$0.057^{+0.022}_{-0.016}$
$K\bar{K}\pi$	$6.90\substack{+0.44\\-0.42}$	$1.86^{+0.68}_{-0.49}$	$0.27^{+0.10}_{-0.07}$
$K\bar{K}\eta$	$1.27\substack{+0.15 \\ -0.14}$	$0.51^{+0.31}_{-0.23}$	$0.40^{+0.25}_{-0.18}$
$\pi^+\pi^-\eta'$	$1.20^{+0.18}_{-0.17}$	$0.25_{-0.09}^{+0.14}$	$0.21_{-0.08}^{+0.12}$
$\pi^+\pi^-p\bar{p}$	$0.365\substack{+0.042\\-0.039}$	$0.236\substack{+0.076\\-0.052}$	$0.65_{-0.16}^{+0.22}$
$K^0_S K^{\pm} \pi^{\mp} \pi^{+} \pi^{-}$	$2.39^{+0.67}_{-0.62}$	$1.00\substack{+0.69\\-0.42}$	$0.42^{+0.34}_{-0.19}$
$K^+K^-\pi^+\pi^-\pi^0$	$3.50\substack{+0.60\\-0.57}$	$1.36_{-0.48}^{+0.70}$	$0.39^{+0.22}_{-0.14}$
$\pi^+\pi^-\eta$	$1.43_{-0.38}^{+0.41}$	< 0.96 [18]	< 0.78
$2(\pi^+\pi^-)$	$0.86^{+0.13}_{-0.12}$	< 0.41 [19]	< 0.50
$K^+K^-\pi^+\pi^-$	0.57 ± 0.10	< 0.32 [19]	< 0.60
$2(K^+K^-)$	$0.135\substack{+0.028\\-0.027}$	< 0.14 [19]	< 1.5
$3(\pi^+\pi^-)$	1.75 ± 0.48 [20]	< 2.9 [18]	< 2.0
$K^+K^-2(\pi^+\pi^-)$	0.72 ± 0.37 [20]	< 2.2 [18]	< 5.4
$\phi\phi$	$0.155\substack{+0.018\\-0.017}$		
$\phi K^+ K^-$	$0.36_{-0.14}^{+0.15}$		
$2(\pi^+\pi^-\pi^0)$	$15.1^{+2.0}_{-1.9}$		

A few observations & questions:

- Q<1 for all the modes with significant signals and some modes with upper limits
- $Q^{p\bar{p}} \ll 1$ (>40 σ below 1), very strange
- Problem in theoretical assumptions?
- Problem in experimental data (neglecting interference, ...)?
- Glueball mixing in η_{c} or/and η_{c}^{\prime} ?
- Exotic decays of η_{c} or/and η_{c}^{\prime} ?
 - Relevant to B.3 "... heavy meson loops"
- Are there dominant decay modes of η'_c ?

$$\frac{\Gamma_{\eta_c' \to h}}{\Gamma_{\eta_c \to h}} \neq \frac{\Gamma_{\eta_c' \to 2g}}{\Gamma_{\eta_c \to 2g}}? \qquad \frac{\Gamma_{\eta_c' \to h}}{\Gamma_{\eta_c \to h}} \neq \frac{\Gamma_{\eta_c'}}{\Gamma_{\eta_c}}?$$

14

 2.6σ lower than LQCD result of 6.57±0.17 keV [Meng, Feng, Liu, Wang, Zou, arXiv:2100.00281v21 	Fit results & dise	cussions	
Zou, arxiv:2109.09381v2]		PDG2021	PDG average is 3.7σ
Γ_{η_c}	$32.2\pm0.7~{ m MeV}$	32.0±0.7 MeV	of 6.57±0.17 keV
$\Gamma_{\eta_c(2S)}$	$14.1 \pm 3.1 \text{ MeV}$	$11.3^{+3.2}_{-2.9}$ MeV	
$\Gamma_{\eta_c \to \gamma \gamma}$ First	$5.43^{+0.41}_{-0.38}$ keV	5.15±0.35 keV	
$\Gamma_{\eta_c(2S) \to \gamma\gamma}$ result!	$-2.21^{+0.88}_{-0.64}$ keV	Not available	
$\mathcal{B}(B^+ \to \eta_c K^+)$	$(10.8 \pm 0.6) \times 10^{-4}$	(10.8±0.8)×10 ⁻⁴	
$\mathcal{B}(B^+ \to \eta_c(2S)K^+)$	$(4.42 \pm 0.96) \times 10^{-4}$	(4.4±1.0)×10 ⁻⁴	
$\mathcal{B}(\psi(2S) \to \gamma \eta_c(2S))$	$(7.0^{+3.4}_{-2.5}) \times 10^{-4}$	(7±5)×10 ⁻⁴	
$\mathcal{B}(\psi(2S) \to \pi^0 h_c \to \pi^0 \gamma \eta_c)$	$(5.03^{+0.52}_{-0.49}) \times 10^{-4}$	(4.3±1.0)×10 ⁻⁴	
This study: $\Gamma_{\eta_c(2S)}/\Gamma_{\eta_c} =$	$0.44 \pm 0.10 \qquad \qquad \frac{\mathcal{B}(\eta_c(2S))}{\mathcal{B}(\eta_c - 1)}$	$\frac{\rightarrow \gamma \gamma)}{\rightarrow \gamma \gamma)} = \frac{\Gamma_{\eta_c(2S) \rightarrow \gamma \gamma}}{\Gamma_{\eta_c \rightarrow \gamma \gamma}}$	$\frac{/\Gamma_{\eta_c(2S)}}{/\Gamma_{\eta_c}} = 0.93^{+0.48}_{-0.31} \approx 1$
Chao, Gu, Tuan: $\frac{\Gamma_{\eta_c(2S)}}{\Gamma_{\eta_c}} \approx \frac{\Gamma_{\eta_c(2S)-1}}{\Gamma_{\eta_c \to h}}$	$\frac{1}{2} hadrons}{adrons} \approx \frac{\Gamma_{\psi(2S)\to e^+e^-}}{\Gamma_{J/\psi\to e^+e^-}} = 0.42 \pm$	- 0.01	15

Summary & Discussions

- BESIII with 10B J/ ψ , 3B ψ ' events, Belle II & LHCb with large B-decay samples, Belle II with more two-photon collision data will supply more information on these decays.
- We should try to understand these puzzles.

- Anselmino, Genovese, Predazzi (1991), trigluoniumcharmonium mixing
- Chao, Gu, Tuan (1996) : bigluonium-charmonium mixing
- Qiang Zhao et al.,
 - 1110.6235, η_c mixing effects on charmonium and B meson decays
 - 1712.02550, Revisiting the pseudoscalar meson and glueball mixing and key issues in the search for a pseudoscalar glueball state
- Qian, Xiaohai and Qiang, 1202.3026, Updated study of the η_c and η_c' decays into light vector mesons
- Ying Chen et al., 2107.12749, the glueball content of ηc

On Q^{V} and Q^{P} , with minimal assumption

Assuming only $\frac{\Gamma(2S \rightarrow h)}{\Gamma(1S \rightarrow h)} = \frac{\sum_{n} \Gamma(2S \rightarrow ng)}{\sum_{n} \Gamma(1S \rightarrow ng)}$, one reaches Q^V ≈ 14% and Q^P ≈ 1

Mo, Yuan, Wang, CPC 31 (2007) 686-701, hep-ph/0611214

	Channel	$\mathscr{B}(\mathrm{J}/\psi)$	$\mathscr{B}(\psi')$	PDG2
	$\gamma^* \rightarrow \mathrm{hadrons}$	$(13.50 \pm 0.30)\%$	$(1.66 \pm 0.18)\%$	1.73%
	e^+e^-	(5.94±0.06)% 5.97	$(7.35\pm0.18)\times10^{-3}$	7.938-3
	$\mu^+\mu^-$	(5.93±0.06)% 5.96	$(7.3 \pm 0.8) \times 10^{-3}$	8.0 E-3
	$\tau^+\tau^-$	-	$(2.8 \pm 0.7) \times 10^{-3}$	3.16-3
	$\gamma^* \rightarrow X$	(25.37±0.35)% vs.43	$(3.41 \pm 0.27)\%$	3.63%
	$\gamma\eta_{c}$	$(1.3\pm0.4)\%$	$(2.6\pm0.4)\times10^{-3}$	3.4 E-3
	$\pi^+\pi^- J/\psi$	(1.7+0.4)2	$(31.8 \pm 0.6)\%$	34.68%
	$\pi^0 \pi^0 J/\psi$	($(16.46 \pm 0.35)\%$	18.24%
	ηJ/ψ		$(3.09 \pm 0.08)\%$	3.37%
	$\pi^0 J/\psi$		$(1.26\pm0.13)\times10^{-3}$	1.278-3
	ΥΧ c0		$(9.2 \pm 0.4)\%$	9.79
	$\gamma \chi_{c1}$		$(8.7\pm0.4)\%$	9.75
_	$\gamma \chi_{c2}$	and memories of the	$(8.1 \pm 0.4)\%$	9.52
	ccX	$(1.3 \pm 0.4)\%$	$(77.7\pm1.2)\%$ 8	5.97%
sly	8"+ cix	=27.13% 8*+0	ix = 89.60% 2010	7×104
35 +	Dogg= 12.01	6 ⇒ B38+Br	39= 10.4%	
	was	~26% no b	rig difference	now
\mathcal{R} :	$\frac{4'}{51+} = \frac{10.4}{72.8}$	-= 14.3% 1	$Ree = \frac{7.93}{59.7} = 13.$	3%

Kuang-Ta Chao, Yi-Fan Gu, S.F. Tuan, Commun. Theor. Phys. 25 (1996) 471-478

 $\Gamma_{\rm tot}(\eta_c) \approx \Gamma(\eta_c \to 2g)$ $\Gamma_{\rm tot}(\eta_c') \approx \Gamma(\eta_c' \rightarrow 2g)$

 $\Gamma_{\rm tot}(\eta_c') = \Gamma(\eta_c' \to \eta_c + \pi + \pi) + \Gamma(\eta_c' \to \psi({}^1P_1) + \gamma) + \Gamma(\eta_c' \to J/\psi + \gamma) + \Gamma(\eta_c' \to 2g)$

(i) $\Gamma(\eta'_c \to \eta_c + \pi + \pi)$ and $\Gamma(\psi' \to J/\psi + \pi + \pi)$ both preserve parity and C-parity of their $c\bar{c}$ piece in transition, and have comparable phase space. Hence $\Gamma(\eta'_c \to \eta_c + \pi + \pi) \approx \Gamma(\psi' \to \pi)$ $J/\psi + \pi + \pi$,^[17] and is thus equal to 140 keV.^[7]

(ii) The E1 transition width $\Gamma(\eta'_c \rightarrow \psi({}^1P_1) + \gamma) = (4/3)e_c^2 \alpha k^3 |\langle {}^1P_1 | r | \eta'_c \rangle|^2$. Taking $M({}^1P_1)$ at the c.o.g. of the $M({}^{3}P_{J})$ states, $M_{\eta'_{c}}$ at 3600 MeV, k = 80 MeV, and the dipole transition matrix element $|\langle {}^{1}P_{1}|r|2S\rangle| = 2$ to 3 GeV⁻¹, it is then estimated^[18] that $\Gamma(\eta'_{c} \rightarrow \psi({}^{1}P_{1}) + \gamma)$ is about 11 keV, certainly in the range O(10) keV.

(iii) The M1 transition width $\Gamma(\eta'_c \to J/\psi + \gamma)$ has also been estimated,^[18] and is found to be about 5 keV hence in the range O(1) keV.

$$Q^{P} = \frac{B(\eta_{c}(2S) \rightarrow h)}{B(\eta_{c} \rightarrow h)} = \frac{\Gamma(\eta_{c}(2S) \rightarrow h) / \Gamma_{\eta_{c}(2S)}}{\Gamma(\eta_{c} \rightarrow h) / \Gamma_{\eta_{c}}} = 1$$

Thank you!

Kuang-Ta Chao, Yi-Fan Gu, and S.F. Tuan, Commun. Theor. Phys. 25 (1996) 471-478

The argument is as follows. First, analogous to J/ψ , ψ' , we have

$$\frac{\Gamma(\eta_c' \to h)}{\Gamma(\eta_c \to h)} \approx \frac{[|\psi(0)|/M]_{\eta_c'}^2}{[|\psi(0)|/M]_{\eta_c}^2}$$

via the two-gluon intermediary to any normal light hadron final state h.

$$\Gamma_{\rm tot}(\eta_c) \approx \Gamma(\eta_c \to 2g) = \frac{8\alpha_s^2 |R(0)|_{\eta_c}^2}{3M_{\eta_c}^2} \left(1 + 4.8\frac{\alpha_s}{\pi}\right)$$

$$\Gamma_{\rm tot}(\eta_c') \approx \Gamma(\eta_c' \rightarrow 2g) = \frac{8\alpha_s^2 |R(0)|_{\eta_c'}^2}{3M_{\eta_c'}^2} \left(1 + 4.8\frac{\alpha_s}{\pi}\right)$$

Justify $\Gamma_{tot}(\eta'_c) \approx \Gamma(\eta'_c \rightarrow 2g)$

 $\Gamma_{\rm tot}(\eta_c) = \Gamma(\eta_c' \to \eta_c + \pi + \pi) + \Gamma(\eta_c' \to \psi({}^1P_1) + \gamma) + \Gamma(\eta_c' \to J/\psi + \gamma) + \Gamma(\eta_c' \to 2g)$

(i) $\Gamma(\eta'_c \to \eta_c + \pi + \pi)$ and $\Gamma(\psi' \to J/\psi + \pi + \pi)$ both preserve parity and C-parity of their $c\bar{c}$ piece in transition, and have comparable phase space. Hence $\Gamma(\eta'_c \to \eta_c + \pi + \pi) \approx \Gamma(\psi' \to J/\psi + \pi + \pi)$,^[17] and is thus equal to 140 keV.^[7]

(ii) The E1 transition width $\Gamma(\eta'_c \to \psi({}^1P_1) + \gamma) = (4/3)e_c^2 \alpha k^3 |\langle {}^1P_1 | r | \eta'_c \rangle|^2$. Taking $M({}^1P_1)$ at the c.o.g. of the $M({}^3P_J)$ states, $M_{\eta'_c}$ at 3600 MeV, k = 80 MeV, and the dipole transition matrix element $|\langle {}^1P_1 | r | 2S \rangle| = 2$ to 3 GeV⁻¹, it is then estimated^[18] that $\Gamma(\eta'_c \to \psi({}^1P_1) + \gamma)$ is about 11 keV, certainly in the range O(10) keV.

(iii) The M1 transition width $\Gamma(\eta'_c \to J/\psi + \gamma)$ has also been estimated,^[18] and is found to be about 5 keV hence in the range O(1) keV.

(iv) $\Gamma(\eta'_c \to 2g)$ is estimated to be about 4 MeV by $\operatorname{noting}^{[18]}$ that in the nonrelativistic limit with the hyperfine splitting effects neglected

$$\frac{\Gamma(\eta_c' \to 2g)}{\Gamma(\eta_c \to 2g)} = \frac{[|R(0)|/M]_{\eta_c'}^2}{[|R(0)|/M]_{\eta_c}^2} \approx \frac{\Gamma(\psi' \to e^+e^-)}{\Gamma(J/\psi \to e^+e^-)} = \frac{2.33 \pm 0.04 \text{ keV}}{5.53 \pm 0.10 \text{ keV}} = 0.42 \pm 0.01$$

and using $\Gamma(\eta_c \to 2g) \simeq \Gamma_{tot}(\eta_c) = 10.3^{+3.8}_{-3.4} \text{ MeV}^{[7]}$ and the experimental values for the J/ψ and ψ' leptonic widths.

 $\Gamma_{\eta_c} = 32.2 \pm 0.7 \text{ MeV} \Rightarrow \Gamma_{\eta'_c} \approx 13 \text{ MeV}$