e^+e^- cross section shapes in $\Upsilon(nS)\pi^+\pi^-$ and $B^{(*)}\bar{B}^{(*)}$ channels

Roman Mizuk^{1,2}

¹Lebedev Physical Institute, Moscow ²High School of Economics, Moscow

WS "Hadronic Molecules with Heavy Meson Loops", 16 Feb 2022

Charmonium vs. bottomonium

Vector charmoniumlike states above $D\overline{D}$ threshold: $\psi(3770)$, $\psi(4040)$, $\psi(4160)$, $\psi(4230)$, $\psi(4260)$, $\psi(4360)$, $\psi(4390)$, $\psi(4415)$, $\psi(4660)$.

Bottomonium (until recently): $\Upsilon(4S)$, $\Upsilon(5S)$, $\Upsilon(6S)$.

Why there are less states in bottomonium region?

- phenomenological property of $b\bar{b}$ system
- not all $b\bar{b}$ states are observed

My talk: there is one more (or even two more) $b\bar{b}$ states:

- Observation of $\Upsilon(10750)$.
- $\Upsilon(5S)$: two states?

Observation of $\Upsilon(10750)$

Measurement

 $\Upsilon(10750)$ is observed in energy dependence of $e^+e^- \rightarrow \Upsilon(nS)\pi^+\pi^-$ (n = 1, 2, 3) cross sections

Belle data samples

Scan Υ(5 <i>S</i>)	22 points, each $\sim 1 {\rm fb}^{-1}$, energies between $\Upsilon(4S)$ and $\Upsilon(6S)$ $121 {\rm fb}^{-1}$
$\Upsilon(4S)$ 60 MeV below $\Upsilon(4S)$	$711{\rm fb}^{-1} \\ 89{\rm fb}^{-1}$
Υ(35) Υ(25) Υ(15)	$3 {\rm fb}^{-1}$ 25 ${\rm fb}^{-1}$ 6 ${\rm fb}^{-1}$

Full reconstruction of $\Upsilon(nS)\pi^+\pi^-$ with $\Upsilon(nS) \to \mu^+\mu^-$ and e^+e^- .

Bottomonium candidate?

S-wave states are all known: $\Upsilon(4S)$, $\Upsilon(5S)$, $\Upsilon(6S)$.

D-wave states can be produced via S - D mixing, which is strongly suppressed in bottomonium, $\Upsilon(1D)$ is not seen in e^+e^- annihilation.

A. M. Badalian, B. L. G. Bakker and I. V. Danilkin, "Dielectron widths of the S-, D-vector bottomonium states," Phys. Atom. Nucl. **73**, 138 (2010). Prediction: above $B\bar{B}$ threshold S - D mixing is significantly enhanced due to B-meson loops.

What we see might be $\Upsilon(3D)$ mixed with $\Upsilon(4S, 5S)$ and "dressed" in a cloud of $B^{(*)}\overline{B}^{(*)}$ pairs.

Cross section via ISR

High-statistics $\Upsilon(5S)$ data are 100 MeV above the new structure \Rightarrow use ISR at $\Upsilon(5S)$ to measure the cross sections.

Our signal variable is $\pi^+\pi^-$ recoil mass

$$M_{
m recoil}(\pi^+\pi^-) = \sqrt{(E_{
m cm} - E_{\pi^+\pi^-})^2 - p_{\pi^+\pi^-}^2}.$$

ISR tail is on the right-hand side in $M_{\text{recoil}}(\pi^+\pi^-)$.

Shape of ISR tail provides information about the cross sections.

Verification of signal shape

 $\Upsilon(2S)$ is narrow \Rightarrow negligible contribution from ISR.

Other processes that produce tail: – FSR

- decays in flight
- secondary interactions

$$-\eta
ightarrow \pi^+\pi^-\pi^0$$
, $\pi^+\pi^-\gamma$

Good description of $\Upsilon(2S, 3S)$ data, reliable modeling of signal.

 $M_{
m recoil}(\pi^+\pi^-)$ in $\Upsilon(5S)$ data

Simultaneous fit to cross sections at various energies and $M_{\text{recoil}}(\pi^+\pi^-)$. Signal shape in $M_{\text{recoil}}(\pi^+\pi^-)$ is calculated at each fit iteration. Visualization of fit results

black points: scan results blue points: cross section via ISR

Parameterization: sum of BW amplitudes

Global significance of the new structure including syst. uncertainty is 5.2 σ

Fit results

	Υ(5 <i>S</i>)	Ύ(6 <i>S</i>)	$\Upsilon(10750)$
$\frac{\mathrm{M}\;(\mathrm{MeV}/c^2)}{\Gamma\;(\mathrm{MeV})}$	$\begin{array}{c} 10885.3 \pm 1.5 {}^{+2.2}_{-0.9} \\ 36.6 {}^{+4.5}_{-3.9} {}^{-1.1} \end{array}$	$11000.0^{+4.0}_{-4.5}{}^{+1.0}_{-1.3}\\23.8^{+8.0}_{-6.8}{}^{+0.7}_{-1.8}$	$\begin{array}{c} 10752.7\pm5.9{}^{+0.7}_{-1.1}\\ 35.5^{+17.6}_{-11.3}{}^{+3.9}_{-3.3}\end{array}$

 $\Gamma_{ee} \times \mathcal{B}$ in eV (accuracy is poor because of multiple solutions)

	Ƴ(5 <i>S</i>)	$\Upsilon(6S)$	$\Upsilon(10750)$
$\Upsilon(1S)\pi^+\pi^-$	0.75 - 1.43	0.38 - 0.54	0.12 - 0.47
$\Upsilon(2S)\pi^+\pi^-$	1.35 - 3.80	0.13 - 1.16	0.53 - 1.22
$\Upsilon(3S)\pi^+\pi^-$	0.43 - 1.03	0.17 - 0.49	0.21 - 0.26

Parameters of $\Upsilon(10750)$ agree with expectation for mixed $\Upsilon(3D)$ state.

Total $e^+e^-
ightarrow bar{b}$ cross section

There is a dip in total $\sigma_{b\bar{b}}$ near 10.75 GeV. It has been described by destructive interference of $\Upsilon(10750)$.

X. K. Dong, X. H. Mo, P. Wang, C. Z. Yuan, Chin. Phys. C 44, 083001 (2020).

Anomalous properties of high Υ states are related to $B^{(*)}\bar{B}^{(*)}$ dynamics. It is crucial to decompose $\sigma_{b\bar{b}}$ into exclusive open flavor cross sections.

Energy dependence of exclusive $e^+e^- \rightarrow B\bar{B}, \ B\bar{B}^*$ and $B^*\bar{B}^*$ cross sections

Method

Difficulty: small branching fractions:

$$BF(B^+ o ar{D^0}\pi^+) = 0.47\%, \ BF(D^0 o K^-\pi^+) = 3.9\%.$$

⇒ Consider ~ 1000 final states ($D^{(*)}\pi(2\pi)$, $D^{(*)}\bar{D}_s^{(*)}$, $J/\psi K(n\pi)$ etc.), use machine learning in selection. Reconstruction procedure is automated.

Reconstruct one *B* meson. To distinguish $e^+e^- \rightarrow B\bar{B}$, $B\bar{B}^*$ and $B^*\bar{B}^*$ use its momentum.

Measured $e^+e^- \rightarrow B\bar{B}$, $B\bar{B}^*$ and $B^*\bar{B}^*$ cross sections

Parameterization: high-order Chebyshev polynomials (10, 17, 12).

Oscillatory behavior. Positions of minima roughly coincide with Unitarized Quark Model prediction: Ono,Sanda,Tornqvist PRD **34**, 186 (1986).

UQM: minima are due to nodes of the $\Upsilon(4S, 5S, 6S)$ wave functions – information about Υ states.

• $\sigma_{b\bar{b}}$ and $\sum \sigma_{B^{(*)}\bar{B}^{(*)}}$ coincide below $B_s^*\bar{B}_s^*$ threshold.

• $\Upsilon(5S)$ peak is due to $B_s^{(*)}\bar{B}_s^{(*)}$, $B^{(*)}\bar{B}^{(*)}\pi$ and bottomonium channels.

Potential models: $\Upsilon(5S) \rightarrow B^{(*)}\bar{B}^{(*)}$ dominate – inconsistent w/ data?

$\Upsilon(5S)$: one or two states?

 $\Upsilon(5S)$: two states?

JHEP **10**, 220 (2019) PRL **117**, 142001 (2016) arXiv:1609.08749

Peaks in $\Upsilon \pi^+ \pi^-$ and $h_b \pi^+ \pi^$ are shifted from peak in $B_s^* \bar{B}_s^*$ by ~ 20 MeV.

Interference? Two states?

Need combined analysis of all cross section measurements.

Bottomonium at Belle II

Belle II energy scan

Between Nov 12 – 29, 2021 Belle II collected high-energy scan data.

Goal: confirm and explore $\Upsilon(10750)$.

Many analyses started, results expected by QWG meeting in Sep 2022.

Conclusions

 $\Upsilon(10750)$ is observed in $e^+e^- \rightarrow \Upsilon(nS)\pi^+\pi^-$, its $\Gamma \sim 35 \text{ MeV}$. Properties are consistent with expectations for $\Upsilon(3D)$ mixed with $\Upsilon(4S, 5S)$ via *B* meson loops. Belle, JHEP **10**, 220 (2019).

First measurement of $e^+e^- \rightarrow B\bar{B}$, $B\bar{B}^*$ and $B^*\bar{B}^*$ energy dependence:

- oscillatory behavior information about Υ wave functions;
- no obvious signal of $\Upsilon(5S)$.

Belle, JHEP 06, 137 (2021).

 $\Upsilon(5S)$: peak position in $B_s^* \bar{B}_s^*$ is shifted by 20 MeV compared to $\Upsilon(nS)\pi^+\pi^-$ and $h_b(nP)\pi^+\pi^-$. Two states?

Belle II performed energy scan, results are coming.

Back-up

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Excess of events near threshold is due to $e^+e^- \rightarrow B^{(*)}\bar{B}^{(*)}\pi$. Fit describes data well.

Fit of cross section shapes

Simultaneous fit of exclusive cross sections $\sigma_{B\bar{B}}$, $\sigma_{B\bar{B}^*}$, $\sigma_{B^*\bar{B}^*}$ and total $\sigma_{b\bar{b}}$ (only for $E_{\rm cm} < 10.75 \,{\rm GeV}$).

Polar angle distribution: $1 + c \cos^2 \theta$. $B\overline{B}$: c = -1, $B\overline{B}^*$: c = 1, $B^*\overline{B}^*$: $c = -0.20 \pm 0.03$.

 $B^*\overline{B}^*$: three states L = 1, S = 0; L = 1, S = 2; L = 3, S = 2. Polarization? \Rightarrow reconstruct γ from $B^* \rightarrow B\gamma$.