

Electroweak Phase Transition in Exotic Higgs Decays with CEPC

Zhen Wang, <u>Xu-Liang Zhu</u>, Yanda Wu, Yuwen Zhang, Elham Khoda, Shih-Chieh Hsu, Shu Li, M. J. Ramsey-Musolf

CEPC Snowmass Progress Meeting

2022-01-25

Outline

- Physics Motivation
- Theoretical Prospects
- Sample Production
- Selections and Cutflow
- BDT Approach
- Limit Setting with TRExFitter
- Summary and future plans

Physics Motivation

J. Kozaczuk, M. J. Ramsey-Musolf, and J. Shelton *Phys. Rev. D* **101**, 115035 (2020).

 We are interested in the strong first-order electroweak phase transition in the "SM Higgs + Light Real Singlet Scalar" model:

$$V = -\mu^2 |H|^2 + \lambda |H|^4 + \frac{1}{2}a_1 |H|^2 S + \frac{1}{2}a_2 |H|^2 S^2 + b_1 S + \frac{1}{2}b_2 S^2 + \frac{1}{3}b_3 S^3 + \frac{1}{4}b_4 S^4 + \frac{1}{2}b_2 S^2 + \frac{1}{3}b_3 S^3 + \frac{1}{4}b_4 S^4 + \frac{1}{2}b_4 S^4 + \frac{1}{2}b_4$$

• Mass eigenstates: $h_1 = h \cos \theta + s \sin \theta$ (h_1 : singlet-like) $h_2 = -h \sin \theta + s \cos \theta$ (h_2 : SM-like Higgs)

Theoretical Prospects

<u>J. Kozaczuk, M. J. Ramsey-Musolf, and J. Shelton *Phys. Rev. D* **101**, 115035 (2020). <u>Z. Liu *et al., Chinese Phys. C* **41**, 063102 (2017).</u></u>

Sample Production

- **Signal:** The samples are generated at 240 GeV. 50000 events per mass point from 5 to 60 GeV for electron and muon channel separately
- Generator: Madgraph5 and Pythia8
- Simulation and reconstruction: cepcsoft 0.1.1 , CEPC_v4

$m_1[GeV]$	a_2	b_3	b_4	D_width	BR
-	0.00379269019	0.00087284094	3.16227766017e-05	7.3774e-05	0.01780479
3	0.00033598183	0.00693322201	8.91250938133e-07	1.0348e-06	0.00025421
10	0.02511886432	0.01954047457	0.00125892541179	0.0030277	0.42627589
10	0.00199526231	0.04908345294	1.58489319246e-05	2.1351e-05	0.00521904
15	0.05011872336	0.00389883725	0.00446683592151	0.011795	0.73632455
15	0.00375837404	0.19540474574	7.94328234724e-05	5.9206e-05	0.01422012
20	0.00630957344	0.49083452948	0.00025118864315	0.0001866	0.04347394
25	0.01	0.97934363956	0.00063095734448	0.00044524	0.09859974
30	0.01678804018	1.55215506742	0.00125892541179	0.0011898	0.22613126
35	0.02511886432	2.46	0.00251188643151	0.0025006	0.38033656
40	0.02660725059	3.89883725345	0.00398107170553	0.0025799	0.38771480
45	0.04216965034	4.90834529482	0.00630957344480	0.0058611	0.58957125
50	0.04216965034	7.77920304401	0.01	0.0050107	0.55126677
55	0.06309573445	9.79343639562	0.01584893192461	0.0089054	0.68549957
60	0.05956621435	15.5215506742	0.02511886431509	0.0045989	0.53001523

Table. Parameters and related BRs that satisfy a strong 1-storder electroweak phase transition. The orange shadingrepresent parameter when BR is at its upper bound, and blueshading represent the lower bound.

Sample Production

 Background : 2-Fermion, 4-Fermion, eeH, mumuH as our background. Expect luminosity : 5.6 ab⁻¹.

Process	$\int L$	Final states	X-sections (fb)	Comments
Higgs signal	5 ab ⁻¹	ffH	203.66	all signals
	5 ab ⁻¹	e^+e^-H	7.04	including ZZ fusion
	5 ab ⁻¹	$\mu^+\mu^- H$	6.77	
	5 ab ⁻¹	$ au^+ au^- H$	6.75	
	5 ab ⁻¹	$ u ar{ u} H$	46.29	all neutrinos (ZH+WW fusion)
	5 ab ⁻¹	qar q H	136.81	all quark pairs (Z $ ightarrow qar{q}$)

2 fermion backgounds

Process	$\int L$	Final states	X-sections (fb)	Comments
$e^+e^- ightarrow e^+e^-$	5 ab $^{-1}$	e^+e^-	24770.90	

http://cepcsoft.ihep.ac.cn/guides/Generation/docs/ExistingSamples/#240-gev lxslc7 : /cefs/data/DstData/CEPC240/CEPC_v4_update

Sample Production

• Higgs decay mode

decay mode	branching ratio	relative uncertainty
$H \rightarrow b\bar{b}$	57.7%	+3.2%, -3.3%
$H \rightarrow c \bar{c}$	2.91%	+12%, -12%
$H ightarrow au^+ au^-$	6.32%	+5.7%, -5.7%
$H \to \mu^+ \mu^-$	2.19×10 ⁻⁴	+6.0%, -5.9%
$H \to WW^*$	21.5%	+4.3%, -4.2%
$H \rightarrow ZZ^*$	2.64%	+4.3%, -4.2%
$H \rightarrow \gamma \gamma$	2.28×10^{-3}	+5.0%, -4.9%
$H \rightarrow Z\gamma$	1.53×10 ⁻³	+9.0%, -8.8%
$H \rightarrow gg$	8.57%	+10%, -10%
Γ_H	4.07 MeV	+4.0%, -4.0%

https://iopscience.iop.org/article/10.1088/1674-1137/43/4/043002/pdf

Selections and Cutflow

Thanks to Yu Bai. <u>Y. Bai *et al., Chinese Phys. C* **44**, 013001 (2020). Tsung-Dao Lee Institute</u>

Selections and Cutflow

Cut Set		$ Cos\theta_{ll} $		C	'osψ	∲ mll		mll_recoil	
Cut Base	line	<0	.71	>-0.74		' 4	77.5~104.5		120~140
Cut Set	npfc	o4j	ljpt	S	ljpt	amass_c	lif	Cos(angle)	blikeness
Cut 1	>40		<80	<	50	<20		<0.9	>0.9999

- Higgs to bb process is our dominant background
- Background process are strongly suppressed by the blikeness cut.

$$Z \rightarrow e^+e^-$$
 , $h_2 \rightarrow h_1 h_1 \rightarrow ~b \bar{b} b \bar{b}$

• M_{ll} and M_{ll}^{recoil} distribution before the cut

Selections and Cutflow

< 0.71

Cut Set

Cut Baseline

 $|Cos\theta_{ll}|$

Cosψ

>-0.74

mll

77.5~104.5

- Higgs to bb process is our dominant background
- Background process are strongly suppressed by the blikeness cut.

mll_recoil

120~140

نغر 10 >

BDT Approach

• Trained the variables after some loose selections

Cut Set	npfo4j	blikeness
Cut bdt	>20	>0.01

Some example of input variables (S1 refer to the h_1 singlet),

Limit Setting with TRExFitter

- Settings :
 - Variable : m_recoil_ll
 - Signal Sample : Exotic decay signal at different mass point after selection
 - Bkg Sample : All the background event after selection
 - Data : Asimov data with all bkg samples
- Sensitivity by cut based is better than BDT

Summary

- Prepared $Z \rightarrow e^+e^-/\mu^+\mu^-$, $h_2 \rightarrow h_1h_1 \rightarrow b\overline{b}b\overline{b}$ signal samples (5×10^4 events for each channel and mass point).
- Reconstructed signal samples. (Background samples are from /cefs/data)
- Cut set preliminary determined and optimized.
- MVA approach.
- Preliminary limit setting by TRExfitter.

Future Plans

• Optimization of cuts targeting electron and muon channel.

Thanks!

• Analysis code git repo : <u>https://gitlab.com/ykrsama/fsclasser.git</u>

< 16 >

< 17 >

< 18 >

