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Introduction

4t Conceptual Detector
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= Particle ID with a drift chamber is a key feature for the 4t conceptual detector
®m Most hadrons from Higgs/Z pole data are below 20 GeV/c

® The drift chamber should have sufficient PID separation power for charged particles < 20 GeV/c



Induced Current

f - dE/dx dN/dx
O g g eso T .I....Ela%n‘rnédiumlé g i rrrrrrrT
‘ s £ © 600k 20 s
(}6 3 ? ..... Ei%n medium " F m

' (o 5505+ i20 : b3 ¢ I

| g T e

¢ 500K e 15? e : E

X wire 450F] e i K =

i Fi g E = & @00 ... kaon medium
4000 7 g = By F i =

| F " K 3 e pion medium |
35007 E 12} % 5% E

I t | | | | | | | | | v b e e o 1 TR EETEE PR BT M IR

| 080" o0 18000250 B00 588408 480 500 0 s 10 1% 20 = e 5 o n 30

( Time [ns] plGeVic) plGeV/c]

for demonstration)

The cluster counting technique count the number of primary ionizations (clusters)
in the current signal (dN/dx)

dN/dx is more powerful for PID due to small fluctuations, but is more challenging

Simulation and experiment are essential for the feasibility and performance study



Simulations

B |mprovement of peak finding algorithm
B Gas mixture comparison: He80 vs. He90
m  Updated PID performance



The simulation workflow
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Requirement
Fast: Data size of waveform is huge. Fast online algorithm at the front-end is recommended
Efficient: Good ability to recover pile-up. High pulse detection efficiency

Peak finding using derivatives
Not sensitive to the baseline
Good ability for pile-up recovery (especially for fast rising-edge signal)
Fast and easy to implement



Peak finding algorithm (l1)

= Low pass filter (smoothing)
= Filter out high frequency noises in the waveforms in order to improve the S/N ratio
= Finite impulse response (FIR) filter with a cutoff frequency (F): FIR[i] = a0*x[n] + al*x[n-1] + -

= Derivative (peak detection)
m First derivative (D1): D1[i] = FIR[i] = FIR[I = G]
m Second derivative (D2): D2[i] = D1[i] = D1[i — G]
= Hit detection: threshold passing (T)

The cutoff frequencies, derivative steps and thresholds have been optimized



Smoothing

— FIR
Frequence Response — MA
0
10, = Digital filter: Reduce impact from noises with
high frequencies
50 = Moving average: Poor frequency response
) = Optimal filter with Remez exchange algorithm
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Derivative

= Use second derivative instead of first derivative (rising-edge pile-ups recovery)
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Pile-up on the falling edge is easier to recover.
However, it is not the case for pile-up on the
rising edge.




Noise definition

- - - - . O-Noise
= Noise ratio definition: ———
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More reasonable noise definition. Noise level is only dependent on the

single-pulse amplitudes. (Previously use averaged charge to normalize)
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K/pl separation power with the updated algorithm

Separation Power ()

He 90% + iC,H;y 10%, track length = 1m

E —@—— dN/dx (truth)
8 :_ ................................................... e O

— —i—— dN/dx (new counting, T = 1.0 ns, NR = 0.02)
7 :_ ......................................................................................................................................................

E —F— dN/dx (old counting, © = 1.0 ns, NR = 0.02)

Separation power

(@), - (@),

(o + 0x)/2

Momentum (GeV/c)

Better separation power for the updated algorithm with tuned parameters
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Ncl (/cm)
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Larger cluster density (more statistics, more pile-ups)
He90: Larger longitudinal diffusion (more pollution from the secondaries)

13



dN/dx from MC truth

He 90% + iC,H,, 10% He 80% + iC,H,, 20%
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He 90% + 1C,H;5 10% mixture has better K/pi separation for high momentum
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K/pl separation power for gas mixtures

Separation Power (o)
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* He 90% + 1C,H;, 10% has better K/pi separation for high momentum
* He 80% + 1C,H,y 20% has better K/pi separation for low momentum
* PID in low momentum region can be covered by timing detector = He 90% is more attractive
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Fast simulation

= Fast simulation with sampling method can

: : : - : Workflow
quickly provide PID information with
: 0 Tracking Geometr
® wider momentum range: 0-20 GeV/c (particle, momentum...) (Laver diu’g’___)
® timing information

Tracking length

/\

dN/dx sim TOF sim

\/

x or likelihood calculation

= dN/dx model: i
® dN/dXmeqs = AN [dXtryen X € |
® dN/dxryen: Sampled from Garfield++

m € (counting efficiency): a function of cluster
density and tuned from full sim.

= Timing detector model:
m R=18m v
m Assuming a time resolution of 50 ps Analysis




Separation Power

PID performance

Noise ratio = 2%
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PID performance

Noise ratio = 2%
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20 K/pi separation power up to 20 GeV/c requires

* thickness of DC > 65 cm for NR =

2%

* thickness of DC > 85 cm for NR = 10%

NR = 2%
NR = 10%

Waveform
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Experiments

m Prototype test at IHEP
B Beam test data analysis
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Test with different gas mixtures

= Test primary ionization signals with different gas ratios
= He/iC,H,, = 90/10
= He/iC,Hy, = 80/20
= He/iC,H,, = 70/30

= High He ratio (@ the same HV) means high gas gain and high
SNR, which is good for cluster counting

= Low He ratio requires preamplifiers with high gain bandwidth
product (GBP)

He/iC,H,, = 80/20

Prototype test @ IHEP

Proportional tube (¢=32mm)

Preamplifier




Beam test data analysis (preliminary)

Beam test @ CERN from F. Grancagnolo’s group Preliminary peak finding with our algorithm

schematic
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The test was performed during November 2021 at CERN on £

the H8 beam line in a parasitic mode. Main users on the same -0 100 200 300 400 500 600 700 800 0 100 200 300 400 G500 600 700 800

beam line was a team testing a tile calorimeter and, [EE.
therefore, requesting for large part of the time, beams of
electrons and hadrons, at various energies, needed for their
calibration, but useless for our purposes. Only sporadically, a

beam of 165 GeV/c muons was available for us 024 0.08 o
Ongoing activities:
* Binary file converter

* Outlier removal
* Event classification
* Tuning peak finding algorithm
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See Franco’s report in CEPC Physics and Detector Plenary Meeting:
https://indico.ihep.ac.cn/event/15676/contribution/2/material/slides/0.pdf 21
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Updated simulation shows
He 90% + iC,H,, 10% gas mixture gives better K/pi separation at high momentum

It is possible to shrink the thickness of DC to less than 1m to satisfy 20 K/pi separation
up to 20 GeV/c

Experiment status
Prototype test with different gas mixtures
Data analysis with the beam test data is ongoing
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More study of gas mixtures

* choice of the gas mixture is essential
* High cluster density compatibly with cluster

* Simulation of gas mixture performed to understand
the gas property and optimize the working point
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* Low drift velocity helps to identify clusters in time
* Small longitudinal diffusion is beneficial to both
spatial resolution and dN/dx measurement
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Full ssimulation

Current [{C/ns]

Induced current Realistic waveform
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Signal generator (Garfield++): Electronics: Peak finding algorithm:
* Heed: ionization process * Preamplifier * Low pass filter (smoothing)
* Magboltz: gas properties « Noises * Second derivative (peak detection)
(drift/diffusion) * ADC
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Prototype Experiment Setup

Detector
prototype

Sr Source

OR

V' Proportional tube (p32mm)
v'Gas: He + iC4H1,

Pulse or Waveform |

Generator iyrectangular .
Generator .

waveform |

I
1
1
e e e e, e e, ——————-

Oscilloscope

v" Pre-amplifier: LMH5401 evaluation module
v" Gain bandwidth product (GBP): 8 GHz

v Gain: 12 dB (4 V-V)

v R 127 Q
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