Status of the Silicon Tracker

Yiming Li (IHEP, CAS) On behalf of the CEPC silicon tracker community

CEPC Day, 29 Jan 2022

Si Tracker for CEPC

- CEPC requires a high-resolution and lowmaterial tracking system
- Large area of silicon!
 - > 70 m² for baseline design: Silicon + TPC
 - ~ 140 m² for Full Silicon Tracker

CMOS is the promising technology for cost effectiveness and performance

CMOS Si tracker collaborators

Convenors: Harald Fox (U. Lancaster), Meng Wang (SDU)

Australia

• University of Adelaide

China

- Harbin Institute of Technology
- Institute of High Energy Physics, CAS
- Northwestern Polytechnical University
- Shandong University
- T. D. Lee Institute Shanghai Jiao Tong University
- University of Science and Technology of China
- University of South China
- Zhejiang University

Germany

• Karlsruhe Institute für Technologie

Italy

- INFN Sezione di Milano, Università degli Studi di Milano e Università degli Studi dell'Insubria
- INFN Sezione die Pisa e Università di Pisa
- INFN Sezione di Torino e Università degli Studi di Torino

UK UK

- Lancaster University
- Queen Mary University of London
- STFC Daresbury Laboratory
- STFC Rutherford Appleton Laboratory
- University of Bristol
- University of Edinburg
- University of Liverpool
- University of Oxford
- University of Sheffield
- University of Warwick

22/10/2021

ATLASPix3 sensor

- TSI 180nm HV process on 200 Ω cm substrate
- Pixel size 50 \times 150 μ m²
- 132 columns × 372 rows (20.2 × 21 mm² chip)
- Triggerless/triggered readout possible
- Binary with ToT information
- Power consumption ~140 mW/cm²

I. Peric et al., High-Voltage CMOS Active Pixel Sensor, IEEE JSSC, Volume: 56, Issue: 8, Aug. 2021 https://ieeexplore.ieee.org/document/9373986

Time-over-Threshold (ToT) as proxy of signal amplitude

Mainly working with ATLASPix3.0 (some thinned to 150um) ATLASPix3.1 delivered in Feb 2021

Single-chip programme

- Experience gained with single chip tests (up to last CEPC Day)
 - GEneric Configuration and COntrol System designed at KIT
 - LFP-FMC connection to Nexys FPGA, PCIe x16 to DUT, allows extensive tests
 - Carrier board for ATLASPix3 single-chip
- O(65) GECCO boards and carrier boards produced in China
- Chips & boards distributed globally and multiple institutes set up lab tests

Single chip tests

- ATLASPix3 responses to cosmic ray or various radioactive sources (⁵⁵Fe, ⁹⁰Sr, ²⁴¹Am) are observed at different sites
- Thresholds at 800e noise <~ 80e</p>

Test with injection charge: (1) untuned (2, 3) tuned with higher / lower thresholds

Quad module

- Four chips sharing services by common power connections and configuration lines
- Inspired by ATLAS ITk quad module concept for large area application

Bianca Raciti, PSD 2021 poster

Quad module test

- Data flex and power cables designed by INFN Milano, under verification
- Adapter card for connecting to GECCO
- 9 quads with ATLASPix3.0 assembled, test ongoing
 - All chips can be configured on a quad
 - Single chip responsive to radiative source

Plan for testbeam

Motivation:

- Ultimate test of a sensor system
- Measure efficiency and position resolution
- Study performance with angled tracks
- Beam time at DESY booked for 4th April

Jaap Veltuis, talk at SiTracker meeting 20 Jan 2022

DUT configuration

- KIT produced telescope cards carrying 4 sensors with ~2.5 cm spacing
- Two stations of 4-sensors in zipper configuration – closest as possible
- No need for trigger: each sensor provides hits and time stamps
- Test setup being assembled by Bristol/Edinburgh/Lancaster

New sensor development

- Improved sensor designs for tracking at electron colliders
 - Joint engineering run with LHCb 2020
 - Designs for CLIC, CEPC, DESY telescope upgrade (TELEPIX)
 - Pixels 25µm X 165µm
- Key improvement
 - Reduced pixel size
 - Different amplifier/comparator types
 - Reduced power consumption

Matr ix	Pixel size μm	Pixel type	Amplifier	Comparator
1	25x165	HVCMOS	N/C MOS	NMOS
2	25x165	HVCMOS	N/P MOS	CMOS
3	25x165	HVCMOS	NMOS	distributed
4	25x35	DMAPS	NMOS	CMOS

Ivan Peric, UK-CEPC tracker workshop, https://indico.ph.ed.ac.uk/event/103/

Preliminary measurements and implications

- Pixel matrices with three amplifier types have been operated with smallest possible threshold
- Signal to noise ratio (from ToT) and time walk for signals larger than 3200e have been measured
- CMOS amplifier has smallest time walk
- Low power consumption is possible (up to factor of 4 reduction compared with ATLASPix3)

Ivan Peric, UK-CEPC tracker workshop, https://indico.ph.ed.ac.uk/event/103/

ATLASPIX3: 140mW/cm²

Sensor in 55nm technology

- HLMC (上海华力) offers 55nm technology with similar layers as TSI
- Test sensors designs will be submitted within a MPW run
- Originally planned for Aug 2021, seeking opportunity in Mar 2022
- An area of 3mm*4mm is targeted

KIT design for test sensors

IHEP simulation for 6-pixel test structure

Mechanics design

- System design concept (SIT2)
 - Truss structure for long stave hosting 16 quads
 - Distribute power and data signals along the stave

F. Palla, F. Bosi, A. Andreazza, F. Sabatini, UK-CEPC tracker workshop, https://indico.ph.ed.ac.uk/event/103/

Mechanics prototyping (for SIT-I)

- Sensors glued to CF base
- Base attaches to support tube via saddles
- Saddles have apertures through which the foam heat exchangers pass and glue to the base
- Thermal performance of foam under study
 - Pre-prototyping ongoing
 - Thermal conductivities under characterization
 - FEA models under development

T. Jones, UK-CEPC tracker workshop, https://indico.ph.ed.ac.uk/event/103/

DAQ development

- GECCO works in prototyping phase but not solution for the system
- Efforts ongoing to investigate the feasibility of other readout system
 - VLDB: used for LHCb upgrade, successfully commissioned in real beam
 - Now managed to read the data stream by "hacking" the data stream in FPGA
 - In synergy with LHCb upgrade efforts

Summary

- The SiTracker community has accumulated a lot of experience with single chip ATLASPix3 sensors
 - Progress are being made with quad modules towards a demonstrator stavelet
 - The system will be tested at real beam in April
 - New ATLASPix3.1 sensors are being distributed, new results expected
- New sensors are under development dedicated to CEPC need
 - Hopefully with 55nm technology
- Mechanical design for the system and pre-prototyping are progressing

http://cepc.ihep.ac.cn/~cepc/cepc_twiki/index.php/Si_Tracker

BACKUP

ATLASPix3 readout electronics

