

Lithium vapour

Wakefield acceleration

Recent Progress on CEPC Plasma Injector

Ion channel

Dr. Dazhang LI from AC, IHEP on behalf of THU-IHEP AAC group

- Radiation reaction in a PWFA
- Optimal Beam loading in 2-bunch PWFA
- Scissor-cross ionization injection and laser interference triggered injection in LWFAs

$$TR = \frac{\overline{\gamma_{trailer} - \gamma_{trailer_initial}}}{\overline{\gamma_{driver} - \gamma_{driver_initial}}}$$

$$\eta = \frac{\sum_{i=1}^{n} E_{i} > E_{t}}{\sum_{j=1}^{n} E_{d} > E_{j}} (E_{i} - E_{trailer}) q_{i}}{\sum_{j=1}^{n} E_{d} > E_{j}} (E_{driver} - E_{j}) q_{j}}$$

Nonlinear(Bubble) regime: nb/np>>1 or $\Lambda = n_b/n_p k_p^2 \sigma_r^2 > 1$

HIGH TRANSFORMER RATIO

Lu W, Huang C, Zhou M, et al, PRL(2006)

HTR mode, $R \ge (45.5-10)/10=3.55$ Normal TR mode, $R \ge (20-10)/10=1$

beam	Driver Trailer				
plasma density $n_p (\times 10^{16} cm^{-3})$	0.50334				
Driver energy $E(GeV)$	10	10			
Normalized emittance $\epsilon_n(mm mrad)$	50→20	100			
Length (um)	600	77			
(matched) Spot size(um)	20→3.87	20→8.65			
Charge (nC)	5.8	1→0.84			
Energy spread δ_E (%)	0	0			
Beam distance (um)	14	19			

Accelerating distance (m)	10.65
Driver energy E(GeV)	1.30
Trailer energy $E(GeV)$	45.5
Normalized emittance $\epsilon_n(mm mrad)$	98.44
Charge(nc)	0.84 (0.78)
Energy spread $\delta_E(\%)$	0.56
TR	~ 4
Efficiency (%) (driver \rightarrow trailer)	59.1

- > 10 GeV \rightarrow 45.5 GeV e- acc. (on paper) work
- > Much smaller $\sigma_{x,y} \rightarrow$ Increase Linac difficulty
- > Trailer's charge close to minimum request
- > Assuming fully symmetric drive beam!

Simulation performed by Dr. X. N. Wang and Prof. W. M. An (2020)

In the QuickPIC simulation, if the drive beam is not fully symmetry, even let $\langle x_d \rangle = 0$, the hosing instability occurs much earlier than we expect. For example, adding only 0.025nm slice jitter to drive beam leads to severe hosing instability. Actually, the resolution of the simulation box is about 2 µm, which is much larger the added noise. Is it physical or not? We did different studies and found that:

- > Increase particle number \rightarrow hosing improved
- > Increase the jitter (noise) to dx level or larger \rightarrow hosing became more serious
- > Partial particles asymmetry → hosing improved

Slide from Dr. X. N. Wang and Prof. W. M. An (2020); Dr. M. Zeng (2021)

beam	Driver	Trailer		V1.0 HTR	V2.0 NTR
plasma density $n_p(\times 10^{16} cm^{-3})$	0.50	334	Accelerating distance (m)	10 7	4 8
Driver energy $E(GeV)$	10	10		15.5	05
Normalized emittance	20	100	I railer energy E(GeV)	45.5	25
$\epsilon_n(mm mrad)$	20	100	Normalized emittance $\epsilon_n(mm mrad)$	98.36	100
Length(um)	300	77	Charge(nC)	0.84	1.21
(matched)Spot size(um)	3.87	8.65	Energy spread $\delta_E(\%)$	0.40	0.40
Charge(nC)	5.8→4	0.84→1.24	TD	- 1	. 16
Energy spread $\delta_E(\%)$	0	0	IK	~ 4	~ 1.0
Beam distance(um)	149-	→184	Efficiency(%) (driver -> trailer)	60.0	54.0

Slide from Dr. X. N. Wang, Dr. S. Y. Zhou and Prof. W. M. An (2021)

Backup scheme with TR ~ 1.5

Asymmetry Ratio	Energy	Emittance (mm·mrad)	Bunch charge (0.2%)	Bunch charge (2%)	rms Energy spread
0	25.02 GeV	100 / 100	0.45 nC	1.36 nC	0.4%
0.1%	24.97 GeV	111 / 108	0.36 nC	1.36 nC	0.4%
1%	24.93 GeV	174 / 163	0.28 nC	1.36 nC	0.44%
2.5%	24.89 GeV	431 / 294	0.24 nC	1.33 nC	0.62%
10%	25.45 GeV	1057 / 1659	0.03 nC	0.28 nC	2.79%
2.5% (baseline)	26.25 GeV	645 / 496	1 nC (26.25 ±1%),	ΓR ~ 1.76, η~52%	0.86%

According our theoretical analysis, TR ~ 1-1.5 may be acceptable if without extra damping methods

- Main Linac (Scheme-I)
 - If RF gun can provide electron beam with required shape, the main linac just accelerate beam to 10GeV.
 - Acceleration:
 - The longitudinal shape could be almost maintained
 - Short-range longitudinal wakefield + short bunch length + high bunch charge
 - Energy spread: 1.8% \rightarrow Difficult design for FFS

- Main Linac (Scheme-II)
 - In order to decrease the energy spread and more flexible and compatible with other beam shaping scheme, one bunch compressor is introduced
 - Long bunch length beam + bunch compressor +short bunch length beam acceleration
 - High accelerating gradient s-band accelerating structure: 27MV/m
 - Energy spread: 0.275%
 - ✓ Longitudinal deformation, need more optimization

- Radiation reaction in a PWFA
- Optimal Beam loading in 2-bunch PWFA
- Scissor-cross ionization injection and laser interference triggered injection in LWFAs

IOP Publishing

New J. Phys. 23 (2021) 075008

https://doi.org/10.1088/1367-2630/ac12fa

	New Journal of Physics The open access journal at the forefront of physics	Destucter Physicalische Gesetlischaft DPG IOP Institute of Physics	Published in partnership with: Deutsche Physikalische Gesellschaft and the Institute of Physics	2.0	L.			- Nume 近似模型 严格模型	rical 1 1
CrossMark OPEN ACCESS	PAPER Radiation reaction of betatron oscillation	on in plasma w	akefield	1.5 - N - 1.0 -					
RECEIVED 7 April 2021 REVISED 18 June 2021 ACCEPTED FOR PUBLICATION	ACCELEFALOIS Ming Zeng ^{1,2,*} and Keita Seto ^{3,4} institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing, institute of Chinese Academy of Sciences, 100049 Beijing, People's Republic interval and the set of th	g, People's Republic of China of China Romania		0.5					
9 July 2021 Published 28 July 2021	 ⁴ Horia Hulubei National Institute for R & D in Physics (ELI-NP), 07/129 Magurele, ⁴ Author to whom any correspondence should be addressed. E-mail: zengming@ihep.ac.cn 	ng (IFIN-HH), 077125 Maguro	ele, Romania	0.0	0.2	0.4 t	0.6	0.8	1.(1e

Table 1. Some examples of $\gamma_{0\text{max}}$, L_S and χ_{max} with varying n_p , S and γ_0 .

Case No.	$n_{\rm p}~({\rm cm}^{-3})$	$k_{\rm p} \ ({\rm m}^{-1})$	S	$\gamma_{0\rm max}$	γ_0	$L_{S}(\mathbf{m})$	$\chi_{ m max}$
1		$1.88 imes 10^5$	2	$5.4 imes10^{6}$	$1 imes 10^5$	563.2	$1.9 imes10^{-4}$
2	10 ¹⁸				$5 imes 10^{6}$	80.0	3.6×10^{-3}
3			8	$2.1 imes 10^6$	1×10^5	140.8	3.9×10^{-4}
4					2×10^{6}	31.5	$3.7 imes 10^{-3}$
5		$5.95 imes 10^4$	2	$2 1.2 \times 10^7$	1×10^5	5632	$6.1 imes10^{-5}$
6	10 ¹⁷		2		1×10^{7}	563.2	$1.9 imes 10^{-3}$
7			8	8 4.6×10^6	$1 imes 10^5$	1408	$1.2 imes10^{-4}$
8					$4 imes 10^6$	222.6	2.0×10^{-3}
					1		

1.0 1e9

> 1st detailed analysis on RR

1

effects of an e-'s BO in a PWA

Both classical and quantum \geq

conditions are considered

Can be ignored in CPI >

Radiation reaction in a PWFA

Optimal Beam loading in 2-bunch PWFA

Scissor-cross ionization injection and laser interference triggered injection in LWFAs

Try to find an optimal energy spread

> Trailer's relative energy spread is related to

 $Q_d, Q_t, \sigma_{zd}, \sigma_{zt}, \sigma_{rd}, \sigma_{rt}, d_{dt}, n_p$

- > Reduce the coefficients' # by introducing charge per unit length $\Lambda = n_b \sigma_r^2$
- Scan a large range to fix the fitting formula

for $\Lambda_t = f(\Lambda_d, \sigma_{zd}, \sigma_{zt}, d_{dt})$

- By using the BFGS algorithm and QuickPIC to obtain a large amount of optimal cases
- > By using polynomial regression
 - to calculate all the coefficients
- Valid for 2-bunch, tri-Gaussian

electron beams

Plan to submit to NJP

 $R = p_0 + p_1 \Lambda_d + p_2 \sigma_{zd} + p_3 \sigma_{zt} + p_4 d_{dt} + p_5 \Lambda_t + p_6 \Lambda_d^2 + p_7 \Lambda_d \sigma_{zd} + p_8 \Lambda_d \sigma_{zt}$ $+ p_9 \Lambda_d d_{dt} + p_{10} \Lambda_d \Lambda_t + p_{11} \sigma_{zd}^2 + p_{12} \sigma_{zd} \sigma_{zt} + p_{13} \sigma_{zd} d_{dt} + p_{14} \sigma_{zd} \Lambda_t$ (3) $+ p_{15} \sigma_{zt}^2 + p_{16} \sigma_{zt} d_{dt} + p_{17} \sigma_{zt} \Lambda_t + p_{18} d_{dt}^2 + p_{19} d_{dt} \Lambda_t + p_{20} \Lambda_t^2,$

 $p_{1}=0.3199 \quad p_{2}=0.3178 \quad p_{3}=0.3084 \quad p_{4}=0.7241 \quad p_{5}=-0.8454 \quad p_{6}=0.02719 \quad p_{7}=0.4858 \\ p_{8}=0.4140 \quad p_{9}=-0.1070 \quad p_{10}=-0.02761 \quad p_{11}=-0.2779 \quad p_{12}=-0.4929 \quad p_{13}=0.2440 \quad p_{14}=-0.3681 \\ p_{15}=1.632 \quad p_{16}=-0.6407 \quad p_{17}=-0.01004 \quad p_{18}=-0.01716 \quad p_{19}=0.01430 \quad p_{20}=0.1439 \quad p_{0}=-1.453 \\ \end{array}$

(2)

$$\begin{split} \Lambda_{t} &= h_{0} + h_{1}\Lambda_{d} + h_{2}\sigma_{zd} + h_{3}\sigma_{zt} + h_{4}d_{dt} + h_{5}\Lambda_{d}^{2} + h_{6}\Lambda_{d}\sigma_{zd} + h_{7}\Lambda_{d}\sigma_{zt} + h_{8}\Lambda_{d}d_{dt} \\ &+ h_{9}\sigma_{zd}^{2} + h_{10}\sigma_{zd}\sigma_{zt} + h_{11}\sigma_{zd}d_{dt} + h_{12}\sigma_{zt}^{2} + h_{13}\sigma_{zt}d_{dt} + h_{14}d_{dt}^{2} + h_{15}\Lambda_{d}^{3} + h_{16}\Lambda_{d}^{2}\sigma_{zd} \\ &+ h_{17}\Lambda_{d}^{2}\sigma_{zt} + h_{18}\Lambda_{d}^{2}d_{dt} + h_{19}\Lambda_{d}\sigma_{zd}^{2} + h_{20}\Lambda_{d}\sigma_{zd}\sigma_{zt} + h_{21}\Lambda_{d}\sigma_{zd}d_{dt} + h_{22}\Lambda_{d}\sigma_{zt}^{2} \\ &+ h_{23}\Lambda_{d}\sigma_{zt}d_{dt} + h_{24}\Lambda_{d}d_{dt}^{2} + h_{25}\sigma_{zd}^{3} + h_{26}\sigma_{zd}^{2}\sigma_{zt} + h_{27}\sigma_{zd}^{2}d_{dt} + h_{28}\sigma_{zd}\sigma_{zt}^{2} \end{split}$$

 $+ h_{29}\sigma_{zd}\sigma_{zt}d_{dt} + h_{30}\sigma_{zd}d_{dt}^{2} + h_{31}\sigma_{zt}^{3} + h_{32}\sigma_{zt}^{2}d_{dt} + h_{33}\sigma_{zt}d_{dt}^{2} + h_{34}d_{dt}^{3},$

$h_1 = 3.658 \times 10^{-1}$	$h_2 = 9.119 \times 10^{-1}$	$h_3 = -1.083$	$h_4 = 3.062 \times 10^{-1}$	$h_5 = -3.754 \times 10^{-2}$
$h_6 = 2.344$	$h_7 = 1.281 \times 10^{-1}$	$h_8 = -5.028 \times 10^{-2}$	$h_9 = -7.136 \times 10^{-1}$	h_{10} =-1.915×10 ⁻¹
h_{11} =-1.316×10 ⁻¹	h_{12} =-2.167	$h_{13} = 1.034$	h_{14} =-7.607×10 ⁻²	h_{15} =-2.391×10 ⁻³
h_{16} =-7.570×10 ⁻²	$h_{17} = 2.641 \times 10^{-2}$	$h_{18}{=}1.160{\times}10^{-2}$	h_{19} =-8.626×10 ⁻¹	h_{20} =-2.424×10 ⁻¹
$h_{21}{=}9.630{\times}10^{-2}$	h_{22} =3.874×10 ⁻¹	h_{23} =-7.137×10 ⁻²	h_{24} =-3.061×10 ⁻³	$h_{25} = 1.238 \times 10^{-1}$
$h_{26}{=}3.752{\times}10^{-2}$	$h_{27}{=}7.655{\times}10^{-2}$	$h_{28} = 5.197 \times 10^{-1}$	$h_{29}{=}{-}2.585{\times}10^{-2}$	h_{30} =-6.071×10 ⁻³
$h_{31} = -2.866$	$h_{32}=1.231$	h_{33} =-2.525×10 ⁻¹	$h_{34} = 6.674 \times 10^{-3}$	$h_0 = -5.014 \times 10^{-1}$

Radiation reaction in a PWFA

Optimal Beam loading in 2-bunch PWFA

Scissor-cross ionization injection and laser interference triggered injection in LWFAs

- In simulation, with 230 TW laser, we can get ~ 750 MeV, 130 pC, 0.4% e- beam
 Sensitive to 2-laser time delay (sub fs)
 Propose an realistic experiment @ Huairou
- > Manuscript V1.0 is done

- Normal transformer ratio electron acceleration
 - TR ~ 1.5 is much more stable than TR ~ 4. Question: $10 \rightarrow 20$ or $20 \rightarrow 45$?
 - Start-to-end simulation is ongoing, together with detailed tolerance analysis
 - There are powerful damping mechanisms in a real PWFA. HTR is still alive
- Radiation reaction effects in PWFA is studied
 - So far, it's completely safe for CEPC plasma injector.
 - Can not be ignored for future very high energy PWFA colliders
- 2-bunch PWFA optimal method is studied
 - 2 fitting formulas are given. It's important to design a PWFA
- **Some studies on controlled injection in LWFA are presented**

