Progress on PID Drift Chamber Study

Guang Zhao, Shuiting Xin, Mingyi Dong, Siman Liu, Linghui Wu, Shengsen Sun

zhaog@ihep.ac.cn

January 29, 2022 CEPC Day

Outline

Introduction

Updates in simulation

- Improvement of peak finding algorithm
- Gas mixture comparison: He80 vs. He90
- Updated PID performance

Status of experiment

- Test with different gas mixture
- Beam test data analysis

Summary

Introduction

- Particle ID with a drift chamber is a key feature for the 4th conceptual detector
- Most hadrons from Higgs/Z pole data are below 20 GeV/c
- The drift chamber should have sufficient PID separation power for charged particles < 20 GeV/c</p>

Introduction (II)

- The cluster counting technique count the number of primary ionizations (clusters) in the current signal (dN/dx)
- dN/dx is more powerful for PID due to small fluctuations, but is more challenging
- Simulation and experiment are essential for the feasibility and performance study

Simulations

- Improvement of peak finding algorithm
- Gas mixture comparison: He80 vs. He90
- Updated PID performance

The simulation workflow

Peak finding algorithm

Requirement

- **Fast:** Data size of waveform is huge. Fast online algorithm at the front-end is recommended
- **Efficient:** Good ability to recover pile-up. High pulse detection efficiency

Peak finding using derivatives

- Not sensitive to the baseline
- Good ability for pile-up recovery (especially for fast rising-edge signal)
- Fast and easy to implement

Peak finding algorithm (II)

Low pass filter (smoothing)

- Filter out high frequency noises in the waveforms in order to improve the S/N ratio
- Finite impulse response (FIR) filter with a cutoff frequency (F): <u>FIR[i] = a0*x[n] + a1*x[n-1] + …</u>

Derivative (peak detection)

- First derivative (D1): D1[i] = FIR[i] FIR[i G]
- Second derivative (D2): <u>D2[i] = D1[i] D1[i G]</u>
- Hit detection: threshold passing (T)

The cutoff frequencies, derivative steps and thresholds have been optimized

Smoothing

- <u>Digital filter</u>: Reduce impact from noises with high frequencies
- Moving average: Poor frequency response
- **Optimal filter** with Remez exchange algorithm
 - Fast roll-off
 - Good stopband attenuation

References

- J. H. McClellan and T. W. Parks, "A unified approach to the design of optimum FIR linear phase digital filters", IEEE Trans. Circuit Theory, vol. CT-20, pp. 697-701, 1973.
- 2 J. H. McClellan, T. W. Parks and L. R. Rabiner, "A Computer Program for Designing Optimum FIR Linear Phase Digital Filters", IEEE Trans. Audio Electroacoust., vol. AU-21, pp. 506-525, 1973.

Derivative

Use second derivative instead of first derivative (rising-edge pile-ups recovery)

Noise definition

- **Noise ratio definition:** $\frac{\sigma_{Noise}}{\bar{A}_{signal}}$
 - \bar{A}_{signal} : Averaged single-pulse amplitude

• σ_{Noise} : Noise RMS

Fit to single-pulse amplitudes with a Polya function

More reasonable noise definition. Noise level is only dependent on the single-pulse amplitudes. (Previously use averaged charge to normalize)

K/pi separation power with the updated algorithm

Separation Power (σ) dN/dx (truth) dN/dx (new counting, $\tau = 1.0$ ns, NR = 0.02) dN/dx (old counting, $\tau = 1.0$ ns, NR = 0.02) Separation power $\left| \left(\frac{dN}{dx} \right)_{\pi} - \left(\frac{dN}{dx} \right)_{K} \right|$ $(\sigma_{\pi} + \sigma_{K})/2$ 3 2 10 15 20 25 5 Momentum (GeV/c)

He 90% + iC_4H_{10} 10%, track length = 1m

Better separation power for the updated algorithm with tuned parameters

Properties of gas mixtures

He80: Larger cluster density (more statistics, more pile-ups) He90: Larger longitudinal diffusion (more pollution from the secondaries)

dN/dx from MC truth

He 90% + iC₄H₁₀ 10% mixture has better K/pi separation for high momentum

K/pi separation power for gas mixtures

- He 90% + iC_4H_{10} 10% has better K/pi separation for high momentum
- He 80% + iC₄H₁₀ 20% has better K/pi separation for low momentum
- PID in low momentum region can be covered by timing detector → He 90% is more attractive

Fast simulation

- Fast simulation with sampling method can quickly provide PID information with
 - wider momentum range: 0-20 GeV/c
 - timing information

dN/dx model:

- $dN/dx_{meas} = dN/dx_{truth} \times \epsilon$
- dN/dx_{truth} : sampled from Garfield++
- ϵ (counting efficiency): a function of cluster density and tuned from full sim.

Timing detector model:

- R = 1.8m
- Assuming a time resolution of 50 ps

PID performance

PID performance

 2σ K/pi separation power up to 20 GeV/c requires

- thickness of DC > 65 cm for NR = 2%
- thickness of DC > 85 cm for NR = 10%

Experiments

- Prototype test at IHEP
- Beam test data analysis

Test with different gas mixtures

Test primary ionization signals with different gas ratios

- He/iC₄H₁₀ = 90/10
- He/iC₄H₁₀ = 80/20
- He/iC₄H₁₀ = 70/30
- High He ratio (@ the same HV) means high gas gain and high SNR, which is good for cluster counting
- Low He ratio requires preamplifiers with high gain bandwidth product (GBP)

Prototype test @ IHEP

Proportional tube (ϕ =32mm) Preamplifier

Beam test data analysis (preliminary)

Beam test @ CERN from F. Grancagnolo's group

schematic

The test was performed during November 2021 at CERN on the H8 beam line in a parasitic mode. Main users on the same beam line was a team testing a tile calorimeter and, therefore, requesting for large part of the time, beams of electrons and hadrons, at various energies, needed for their calibration, but useless for our purposes. Only sporadically, a beam of 165 GeV/c muons was available for us.

Preliminary peak finding with our algorithm

Ongoing activities:

- Binary file converter
- Outlier removal
- Event classification
- Tuning peak finding algorithm

muons_165GeV_angle0_GSPS1p2_delay725ns_7Nov_0321

See Franco's report in CEPC Physics and Detector Plenary Meeting: https://indico.ihep.ac.cn/event/15676/contribution/2/material/slides/0.pdf

Updated simulation shows

- He 90% + iC₄H₁₀ 10% gas mixture gives better K/pi separation at high momentum
- It is possible to shrink the thickness of DC to less than 1m to satisfy 2σ K/pi separation up to 20 GeV/c

Experiment status

- Prototype test with different gas mixtures
- Data analysis with the beam test data is ongoing

Backup

More study of gas mixtures

- · choice of the gas mixture is essential
 - High cluster density compatibly with cluster counting efficiency
 - · Low drift velocity helps to identify clusters in time
 - Small longitudinal diffusion is beneficial to both spatial resolution and dN/dx measurement
- Simulation of gas mixture performed to understand the gas property and optimize the working point

Full simulation

Signal generator (Garfield++):

- Heed: ionization process
- Magboltz: gas properties (drift/diffusion)

Electronics:

Electronics

- Preamplifier
- Noises
- ADC

Realistic waveform

Peak finding algorithm:

- Low pass filter (smoothing)
- Second derivative (peak detection)

Prototype Experiment Setup

