The 7th International Conference on Chirality, Vorticity and Magnetic Field in Heavy Ion Collisions. July 15, 2023, Beijing

Impact of globally spin-aligned vector mesons on the search for the chiral magnetic effect in heavy-ion collisions

Diyu Shen

Fudan University

Physics Letters B 839 (2023) 137777

Diyu Shen, Jinhui Chen, Aihong Tang and Gang Wang

The chiral magnetic effect

Chirality imbalance + external magnetic field = electrical current

- Electrical current along the \overrightarrow{B} field generates charge separation.
- Charge dipole gives non-zero a_1 ($-a_1$) to positively (negatively) charged particles, while the a_1 fluctuates event by event so on average $\langle a_1 \rangle = 0$.
- Observables are developed in experiment to measure the a_1 and/or charge separation.

D.E. Kharzeev, J. Liao, Nat. Rev. Phys. 3 (2021) 55-63

The chiral magnetic effect

• Charge separation along B field, characterized by non-zero a_1 .

Z.T. Liang et al., Physics Letters B 629 (2005) 20–26 Global spin alignment of vector meson

• Spin state along orbital angular momentum, characterized by ρ_{00} in spin density matrix.

Directions of \overrightarrow{B} and \overrightarrow{L} are correlated, both are perpendicular to reaction plane

Global spin alignment

$\rho_{00} \neq 1/3$ means non-zero "elliptic flow" of decay products in CMS.

July 15, 2023

Global spin alignment to the $\Delta \gamma$ observable

 $\gamma_{112} = \langle \cos(\phi_{\alpha} + \phi_{\beta} - 2\Psi_{RP}) \rangle \qquad \begin{array}{l} \text{S.A. Voloshin, Phys. Rev. C 70 (2004)} \\ 057901 \end{array}$

$$\gamma_{112}^{OS} = \left\langle \cos(\phi_{+} + \phi_{-} - 2\Psi_{RP}) \right\rangle$$

$$= \left\langle \cos \Delta \phi_{+} \right\rangle \left\langle \cos \Delta \phi_{-} \right\rangle + \frac{N_{\rho}}{N_{+}N_{-}} \operatorname{Cov}(\cos \Delta \phi_{+}, \cos \Delta \phi_{-}) - \left\langle \sin \Delta \phi_{+} \right\rangle \left\langle \sin \Delta \phi_{-} \right\rangle - \frac{N_{\rho}}{N_{+}N_{-}} \operatorname{Cov}(\sin \Delta \phi_{+}, \sin \Delta \phi_{-})$$

$$\frac{\langle ab \rangle}{\langle ab \rangle} = \left\langle a \right\rangle \langle b \rangle + \operatorname{Cov}(a, b)$$

In center-of-mass system, the covariance between π^+ and π^- from ρ decays is

$$\operatorname{Cov}(\cos\phi_{+}^{*},\cos\phi_{-}^{*}) = -\left\langle\cos^{2}\phi_{+}^{*}\right\rangle + \left\langle\cos\phi_{+}^{*}\right\rangle^{2} = -\frac{1}{2} + \frac{1}{8}(3\rho_{00} - 1),$$
$$\operatorname{Cov}(\sin\phi_{+}^{*},\sin\phi_{-}^{*}) = -\left\langle\sin^{2}\phi_{+}^{*}\right\rangle + \left\langle\sin\phi_{+}^{*}\right\rangle^{2} = -\frac{1}{2} - \frac{1}{8}(3\rho_{00} - 1).$$

Where we used
$$\phi_+^* = \phi_-^* + \pi$$
 and $\frac{dN}{d\phi^*} = \frac{1}{2\pi} \left[1 - \frac{1}{2} (3\rho_{00} - 1) \cos 2\phi^* \right]$

The 7th Chirality, Vorticity, Magnetic field

July 15, 2023

Global spin alignment to the $\Delta\gamma$ observable

Therefore,
$$\Delta \gamma^* = \gamma^{*\text{OS}} - \gamma^{*\text{SS}} = \frac{N_{\rho}}{N_+N_-} \frac{3\rho_{00} - 1}{4} = -\frac{N_{\rho}}{N_+N_-} v_2^*$$

The $\Delta \gamma$ is proportional to the "elliptic flow" of decay products in ρ rest frame.

In lab frame,

$$\Delta \gamma_{112} = \frac{N_{\rho}}{N_{+}N_{-}} \left[\frac{1}{8} (f_c + f_s)(3\rho_{00} - 1) - \frac{1}{2} (f_c - f_s) \right] \sim \frac{N_{\rho}}{N_{+}N_{-}} \left[A_1(3\rho_{00} - 1) + A_2 v_2^{\rho} \right]$$

A linear dependence of $\Delta \gamma_{112}$ on ρ_{00} .

The 7th Chirality, Vorticity, Magnetic field

July 15, 2023

 $v_2^* < 0$

 $v_2^* = 0$

 $v_{2}^{*} > 0$

 $\rho_{00} = \frac{1}{3}$

 $\rho_{00} < \frac{1}{3}$

Global spin alignment to the R correlator

Definition: N. Magdy, Phys. Rev. C 97 (2018) 061901

$$R_{\Psi_2}(\Delta S) \equiv rac{N(\Delta S_{ ext{real}})}{N(\Delta S_{ ext{shuffled}})} / rac{N(\Delta S_{ ext{real}}^{\perp})}{N(\Delta S_{ ext{shuffled}}^{\perp})},$$

$$\Delta S = \langle \sin \Delta \phi_+ \rangle - \langle \sin \Delta \phi_- \rangle ,$$

$$\Delta S^{\perp} = \langle \cos \Delta \phi_+ \rangle - \langle \cos \Delta \phi_- \rangle ,$$

$$\begin{split} & \operatorname{Cov}(\langle \sin \Delta \phi_+ \rangle, \langle \sin \Delta \phi_- \rangle) \\ & \sigma^2(\Delta S_{\text{real}}) = f_s \left[\sigma_s^2 + \underbrace{\frac{N_\rho}{N_+ N_-} (1 + \frac{3\rho_{00} - 1}{4})}_{N_+ N_-} \right], \\ & \sigma^2(\Delta S_{\text{shuffled}}) = f_s \sigma_s^2, \\ & \sigma^2(\Delta S_{\text{real}}^\perp) = f_c \left[\sigma_c^2 + \frac{N_\rho}{N_+ N_-} (1 - \frac{3\rho_{00} - 1}{4}) \right], \\ & \sigma^2(\Delta S_{\text{shuffled}}^\perp) = f_c \sigma_c^2, \end{split}$$

$$\begin{split} \frac{S_{\text{concavity}}}{\sigma_R^2} &= \frac{1}{\sigma^2(\Delta S_{\text{real}})} - \frac{1}{\sigma^2(\Delta S_{\text{shuffled}})} - \frac{1}{\sigma^2(\Delta S_{\text{real}}^{\perp})} \\ &+ \frac{1}{\sigma^2(\Delta S_{\text{shuffled}}^{\perp})}. \\ \text{Sign}(S_{\text{concavity}}) &= \text{Sign}\left[-\frac{N_{\rho}}{2N_{+}N_{-}}(3\rho_{00}-1) \right] \\ &- \frac{\Delta \sigma_R^2}{2N_{+}N_{-}}(3\rho_{00}-1) \\ &+ \sigma^2(\Delta S_{\text{real}}^{\perp}). \end{split}$$

$$\Delta \sigma_R^2 = \frac{N_{\rho}}{N_+ N_-} \left[\frac{1}{4} (f_c + f_s) (3\rho_{00} - 1) + (f_c - f_s) \right]$$

A linear dependence of $\Delta \sigma_R^2$ on ρ_{00} .

Global spin alignment to the signed balance function

Signed balance function

A. H. Tang, Chin. Phys. C 44 054101

$$\begin{split} \Delta B_y &\equiv \left[\frac{N_{y(+-)} - N_{y(++)}}{N_+} - \frac{N_{y(-+)} - N_{y(--)}}{N_-} \right] \\ &- \left[\frac{N_{y(-+)} - N_{y(++)}}{N_+} - \frac{N_{y(+-)} - N_{y(--)}}{N_-} \right] \\ &= \frac{N_+ + N_-}{N_+ N_-} [N_{y(+-)} - N_{y(-+)}], \end{split}$$

$$r \equiv \sigma(\Delta B_y) / \sigma(\Delta B_x)$$

Assuming all particles have same pT, we will have

$$\begin{aligned} \sigma^2(\Delta B_y) &\approx \frac{64M^2}{\pi^4} \left(\frac{4}{9M} + 1 + \frac{4}{3}v_2\right) \sigma^2(\Delta S_{\text{real}}), \\ \sigma^2(\Delta B_x) &\approx \frac{64M^2}{\pi^4} \left(\frac{4}{9M} + 1 - \frac{4}{3}v_2\right) \sigma^2(\Delta S_{\text{real}}^{\perp}). \\ \Delta \sigma^2(\Delta B) &\equiv \sigma^2(\Delta B_y) - \sigma^2(\Delta B_x) \\ &\approx c_1 + c_2(3\rho_{00} - 1), \end{aligned}$$

A linear dependence of $\Delta\sigma^2(\Delta B)$ on ρ_{00}

The 7th Chirality, Vorticity, Magnetic field

A. H. Tang, Chin. Phys. C 44 054101

Setups of toy model

• Spectrum of primordial pion

$$rac{dN_{\pi^{\pm}}}{dm_T^2} \propto rac{1}{e^{m_T/T_{
m BE}}-1},$$

• Spectrum of ρ

$$rac{dN_{
ho}}{dm_T^2} \propto rac{e^{-(m_T - m_
ho)/T}}{T(m_
ho + T)},$$

- 195 pairs of $\pi^+\pi^-$ with 33 from ρ decays
- v_2 and v_3 of primordial pions are set to zero.
- Spin alignment effect is introduced by sampling decay products according to

$$\frac{dN}{d\cos\theta^*} = \frac{3}{4} \left[(1 - \rho_{00}) + (3\rho_{00} - 1)\cos^2\theta^* \right]$$

S. Lan, et al. Phys. Lett. B 780 319 D. Shen, et al. Chin. Phys. C 45 054002

Setups of AMPT

- String melting version
- AuAu 200 GeV with impact parameter b ~ 8 fm
- Spin alignment effect is introduced by sampling decay products according to

$$\frac{dN}{d\cos\theta^*} = \frac{3}{4} \left[(1 - \rho_{00}) + (3\rho_{00} - 1)\cos^2\theta^* \right]$$

A linear dependence of $\Delta \gamma$ as a function of ρ_{00} has been observed, slope and intercept depend on spectra and flow of ρ mesons in models.

 $R_{\Psi_2}(\Delta S)$ has similar ρ_{00} dependence as gamma, $\Delta \sigma_R^2$ is also a linear function.

Signed balance function is also sensitive to ρ_{00} , the $\Delta\sigma^2(\Delta B)~$ is also a linear function.

Summary

- The $\Delta \gamma_{112}$, $R_{\Psi_2}(\Delta S)$ and signed balance function $r_{\rm lab}$ are both influenced by the spin alignment ρ_{00} of vector mesons.
- If the ρ_{00} is smaller (larger) than 1/3, it gives negative (positive) signal to the $\Delta \gamma_{112}$, $R_{\Psi_2}(\Delta S)$ and $r_{\rm lab}$.
- The spin alignment of ho_0 meson is critical for the CME measurements.

