Lessons from Isobar and Event Shape Selection Analysis for Search of CME with RHIC Beam Energy Scan Data

Huan Zhong Huang（黄焕中）

University of California Los Angeles
\＆
Fudan University
Thanks to Zhiwan Xu，Brian Chan，Gang Wang and Jinfeng Liao and his group for AVFD and Discussions

Chiral Magnetic Effect

- Chirality imbalance coupled with strong magnetic field induces a charge separation along the B field direction (violates Parity Symmetry dynamically in strong interaction!)
- Heavy-Ion Collision provides an opportunity to observe an intrinsic QCD toplogical phenomenon experimentally.

Chiral Magnetic Effect

- To quantify the collective motions including the charge separation, we expand the particle azimuthal angle distribution as:

$$
\frac{d N_{ \pm}}{d \phi} \propto 1+2 v_{1} \cos \left(\phi-\Psi_{\mathrm{RP}}\right)+2 v_{2} \cos \left[2\left(\phi-\Psi_{\mathrm{RP}}\right)\right]+\cdots+2 a_{ \pm} \sin \left(\phi-\Psi_{\mathrm{RP}}\right)+\cdots,
$$

- Experiment observable:

$$
\Delta \gamma^{\mathrm{CME}}=\gamma^{\mathrm{OS}}-\gamma^{\mathrm{SS}}>0
$$

Lessons from Isobar Collisions

- Isobar data did not observe the predefined CME signatures.
- Why? BKG difference: multiplicity mismatch. $\mathrm{v}_{2}{ }^{\sim} 2 \%$

Isobar collisions sensitive to potential difference in CME observable due to different Magnetic Field
Ru+Ru/Zr+Zr isobars are not exactly the same within sub-percent level to achieve the accuracy needed
These isobars are also small in Z, not favorable for CME searches
Isobar data \rightarrow CME signal is probably small, not necessarily zero ! \rightarrow how small?

Event Shape Selection (Engineering)

Large Colliding Nuclei $\mathrm{Pb}+\mathrm{Pb}$ at LHC and $\mathrm{Au}+\mathrm{Au}$ at RHIC

Unable to select a spherical event shape sample AND with finite Magnetic Field to search for CME
q_{2} from an eta region different from particle of interest
So selected q_{2} not effective in selecting the shape of emission for particles of interest
If the selection is such that $\mathrm{v} 2 \rightarrow 0$ when the events corresponding to the most central collisions, then the number of spectator protons are minimum and not favorable for CME

Event Shape Selection to control v_{2} ?

q2 or v2 has contributions:
participant shape distribution - likely long range and correlated over large eta gaps emission pattern fluctuations - short eta range, uncorrelated for different eta regions
$0 \longleftarrow\left\langle v_{2}\right\rangle$
CME Search: POI - spherical B field -- finite

Event Shape Selection Variables

- Single q^{2} and single v2 are constructed from final particles
- Pair q^{2} and pair v_{2} are calculated based on pair momentum
- Pair momentum is obtained from adding momenta of two particles to mimic decay kinematics $\quad \sim$ more related to $\Delta \gamma$ background

Event shape variables
Elliptic flow variables

(b)

Origins of BKG $\sim \mathrm{v}_{2}{ }^{\text {res }}$

- The BKG from resonance flowing decay in $\Delta \gamma$ is well-represented by product of

$$
\Delta \gamma\{B G\}=v_{2}^{r e s}\left\langle\cos \left(\phi_{\alpha}+\phi_{\beta}-2 \Psi_{R P}\right)\right\rangle
$$

- A toy model targeted $\rho \rightarrow \pi^{+} \pi^{-}$resonance decay confirms the above relation.
- Can we use $\mathrm{V}_{2}{ }^{\text {res }}$ directly to control the BG ?
- NO. Why? $\mathrm{v}_{2}{ }^{\text {res }}$ is modified by the CME existence.

Optimal ESS Approach

- Resonance $\mathbf{v}_{2}{ }^{\text {res }}$ is significantly modified under the CME.
- The increase is proportional to $\mathbf{a}_{1}{ }^{2}$
- Single v_{2} and pair v_{2} are almost constant.

Optimal ESS Approach

Event shape variables
(a)

Elliptic flow variables
(b)

- Unmixed recipes cause residual background near zero-flow region
- Mixed recipes have advantage that the v_{2} and binning q^{2} are less correlated.

。However, pair v2 contains true CME signal, which may lead to over subtraction.
Scenario (c) - pair q^{2}, single v_{2} is the optimal solution.

ESS for AVFD Events: n5/s = 0 (pure BKG)

- AVFD model confirms possible residual background in (a) and (b) unmixed recipes.
- Mixed combination can remove residual BKG and predict over-subtraction in scenario (d)
- ESS (c) using single v2 and binning by pair q2 can well reproduce BKG.

ESS for AVFD: $\mathrm{n}_{5} / \mathrm{s}=0.1$ (moderate CME)

- With CME signal, residual background preserves in (a) and (b) unmixed recipes.
- AVFD confirms that ESS (c) suppress the residual BKG, and successfully match the true signal.
- Over-subtraction of BKG as predicted in (d) projection

Why Over-subtraction in ESS using $\mathrm{v}_{\mathbf{2}}$ (resonance)

- Using $\mathrm{v}_{2}{ }^{\text {res }}$ will cause severe over-subtraction.
- Explains that ESS (d) pair v2 that contains possible CME signal also cause over-subtraction.

Using separate region Qb - Not Effective

- Separate region q_{2} has weak correlation with the POl's V_{2}
- This cause a gap in $\Delta \gamma-v_{2}$ plot that leads to less reliable results:
- Statistic errors are 3 times larger than ESS involving POI.
- Systematic uncertainties demonstrated by 2nd-order polynomial have large variation, even exceed statistic errors.

CME changes the invariant mass distribution

There is no clear region of signal vs background in invariant mass distribution

Application to STAR data

- Both ESS approaches can extrapolate $\Delta \gamma_{E S S}^{112}=\left(1-2 v_{2}\right) \cdot$ Intercept

27 GeV : EPD spectator plane

- Spectator plane is more correlated to the magnetic field direction.
- Finite $\Delta \gamma_{E S S}^{112}$ in mid central events. $\Delta \gamma_{E S S}^{132}$ consistent with zero for all centralities.
- The precision of STAR measurement after ESS is controlled to be 5.4% of ensemble average $\Delta \gamma^{112}$.

19.6 GeV : EPD spectator plane

- Spectator plane is more correlated to the magnetic field direction.
- Finite $\Delta \gamma_{E S S}^{112}$ in mid central events; $\Delta \gamma_{E S S}^{132}$ consistent with zero for all centralities.
- The precision of STAR measurement after ESS i_{1} controlled to be 3.6% of ensembled average $\Delta \gamma^{112}$.

Perspectives

- Resonance v2 turns out to be a CME sensitive observable
- We developed an optimized Event Shape Selection method -single v2 and pair q^{2}, that utilize pair particle information to further suppress residual BKG
- We demonstrate that event shape selection (ESS) approach substantially suppresses (over five-fold) ν_{2} related backgrounds, enhancing the CME search sensitivity considerably.
- Using 1st-order EPD spectator plane, we can achieve a 4-5\% precision in ESS measurement of $\Delta \gamma^{112}\{h h\}$ in RHIC' s BES-II data.

