

Off diagonal elements of the spin density matrix of vector mesons in heavy ion collisions

Liang Zuo-tang Shandong University

2023年7月17日,北京

Introduction

- The global vector meson spin alignment vs the global hyperon polarization
- > The off diagonal elements of the spin density matrix of vector mesons
- Summary and outlook

Prediction of globally polarized QGP

ZTL & Xin-Nian Wang, PRL 94, 102301(2005); PLB 629, 20 (2005)

Global: the direction is fixed; the magnitude is approximately the same.

Great efforts of our experimental colleagues

Global hyperon polarization

JUNITERS

dominates at small

and intermediate p_T

ZTL & Xin-Nian Wang, PRL 94, 102301 (2005).

Quark combination scenario $q_1^{\uparrow} + q_2^{\uparrow} + q_3^{\uparrow} \rightarrow H$

$$\widehat{\rho}_{q_1q_2q_3} = \widehat{\rho}_{q_1} \otimes \widehat{\rho}_{q_2} \otimes \widehat{\rho}_3 \qquad \widehat{\rho}_q = \frac{1}{2} \begin{pmatrix} 1+P_q & 0\\ 0 & 1-P_q \end{pmatrix}$$

$$\rho_{H}(m,m') = \langle j_{H},m' | \hat{\rho}_{q_{1}q_{2}q_{3}} | j_{H},m \rangle$$

$$= \sum_{m_{i},m'_{i}} \rho_{q_{1}q_{2}q_{3}}(m_{i},m'_{i}) \langle j_{H},m' | m'_{1},m'_{2},m'_{3} \rangle \langle m_{1},m_{2},m_{3} | j_{H},m \rangle$$

$$= Clebsch-Gordon coefficients$$

normalization

$$\rho_{H}(m,m') = \frac{\sum_{m_{i},m'_{i}} \rho_{q_{1}q_{2}q_{3}}(m_{i},m'_{i})\langle j_{H},m'|m'_{1},m'_{2},m'_{3}\rangle\langle m_{1},m_{2},m_{3}|j_{H},m\rangle}{\sum_{m,m_{i},m'_{i}} \rho_{q_{1}q_{2}q_{3}}(m_{i},m'_{i})\langle j_{H},m|m'_{1},m'_{2},m'_{3}\rangle\langle m_{1},m_{2},m_{3}|j_{H},m\rangle}$$

Global hyperon polarization

ZTL & Xin-Nian Wang, PRL 94, 102301 (2005).

dominates at small Quark combination scenario $q_1^{\uparrow} + q_2^{\uparrow} + q_3^{\uparrow} \rightarrow H$ and intermediate p_T

$$\boldsymbol{P}_{H} = \boldsymbol{\rho}_{H}\left(\frac{1}{2}, \frac{1}{2}\right) - \boldsymbol{\rho}_{H}\left(-\frac{1}{2}, -\frac{1}{2}\right)$$

$$P_{H} = c_1 P_{q_1} + c_2 P_{q_2} + c_3 P_{q_3}$$

 c_i 's are constants determined by C.G. coefficients.

hyperon	Λ	Σ^+	Σ^0	Σ^{-}	Ξ^0	[1]
combination	P_s	$\frac{4P_u - P_s}{3}$	$\frac{2(P_u+P_d)-P_s}{3}$	$\frac{4P_d - P_s}{3}$	$\frac{4P_s - P_u}{3}$	$\frac{4P_s - P_d}{3}$

In the case that $P_u = P_d = P_s = P_{\overline{u}} = P_{\overline{d}} = P_{\overline{s}}$,

 $P_H = P_{\overline{H}} = P_q$ for all *H*'s and \overline{H} 's (global polarization)

Global vector meson spin alignment

ZTL & Xin-Nian Wang, PLB 629, 20 (2005).

Quark combination scenario $q_1^{\uparrow} + \overline{q}_2^{\uparrow} \rightarrow V$

$$\widehat{\rho}_{q_1\overline{q}_2} = \widehat{\rho}_{q_1} \otimes \widehat{\rho}_{\overline{q}_2} \qquad \qquad \widehat{\rho}_q = \frac{1}{2} \begin{pmatrix} 1+P_q & 0\\ 0 & 1-P_q \end{pmatrix} \qquad \widehat{\rho}_{\overline{q}} = \frac{1}{2} \begin{pmatrix} 1+P_{\overline{q}} & 0\\ 0 & 1-P_{\overline{q}} \end{pmatrix}$$

$$\rho_V(m,m') = \frac{\sum_{m_i,m'_i} \rho_{q_1\overline{q}_2}(m_i,m'_i)\langle j_V,m'|m'_1,m'_2\rangle\langle m_1,m_2|j_V,m\rangle}{\sum_{m,m_i,m'_i} \rho_{q_1\overline{q}_2}(m_i,m'_i)\langle j_V,m|m'_1,m'_2\rangle\langle m_1,m_2|j_V,m\rangle}$$

In both calculations, we considered only the spin degree of freedom and took P_q as a constant, no fluctuation, no correlation etc.

What does it change if we take other degrees of freedom into account?

Take other degrees of freedom into account

We make a minimal step forward and consider other degree of freedom denoted by α The basis state for a quark: $|m, \alpha_q\rangle$ The element of the spin density matrix: $\rho_{qm_q,m_q'}(\alpha_q, \alpha_q') = \langle m_q', \alpha_q' | \hat{\rho}_q | m_q, \alpha_q \rangle$ We consider the simple case: $\bullet \rho_{qm_q,m_q'}(\alpha_q, \alpha_q') = \rho_{qm_q,m_q'}(\alpha_q)\delta_{\alpha_q,\alpha_q'}$ diagonal w.r.t. α_q

•
$$\hat{\rho}_{q_1\bar{q}_2} = \hat{\rho}_{q_1} \otimes \hat{\rho}_{\bar{q}_2}$$
 wave function of V with α_V
• factorized: $\langle \alpha_{q_1}, m_{q_1}; \alpha_{\bar{q}_2}, m_{\bar{q}_2} | j_V, m_V, \alpha_V \rangle = \langle \alpha_{q_1}, \alpha_{\bar{q}_2}^{\checkmark} | \alpha_V \rangle \langle m_{q_1}, m_{\bar{q}_2} | j_V, m_V \rangle$

$$\rho_{mm'}^{V}(\alpha_{V}) = \rho_{mm'}^{V}(\alpha_{V}, \alpha_{V}) = \sum_{\alpha_{q_{1}}, \alpha_{\overline{q}_{2}}} \left| \left\langle \alpha_{q_{1}}, \alpha_{\overline{q}_{2}} \right| \alpha_{V} \right\rangle \right|^{2} \rho_{mm'}^{V(l)}(\alpha_{q_{1}}, \alpha_{\overline{q}_{2}}) \quad \text{average inside } V$$

$$\rho_{mm'}^{V(l)}(\alpha_{q_{1}}, \alpha_{\overline{q}_{2}}) = \sum_{m_{q_{1}}, m_{\overline{q}_{2}}, m_{q_{1}}', m_{\overline{q}_{2}}'} \left\langle j_{V}m' \right| m_{q_{1}}'m_{\overline{q}_{2}}' \right\rangle \rho_{m_{q_{1}}m_{q_{1}}}^{q}(\alpha_{q_{1}}) \rho_{m_{\overline{q}_{2}}, m_{\overline{q}_{2}}'}^{q}(\alpha_{\overline{q}_{2}}) \left\langle m_{q_{1}}, m_{\overline{q}_{2}} \right| j_{V}m \rangle$$

similar to what we had when α -dependence were not considered.

We can also further average over α_V and obtain the α_V -averaged spin alignment.

Take other degrees of freedom into account

1

In this way, we obtain

average inside V

$$\rho_{00}^{V}(\alpha_{V}) = \frac{1 - \left\langle P_{q_{1}}P_{\overline{q}_{2}} \right\rangle_{V}}{3 + \left\langle P_{q_{1}}P_{\overline{q}_{2}} \right\rangle_{V}} \qquad \left\langle P_{q_{1}}P_{\overline{q}_{2}} \right\rangle_{V} = \sum_{\alpha_{q_{1}},\alpha_{\overline{q}_{2}}} \left| \left\langle \alpha_{q_{1}}, \alpha_{\overline{q}_{2}} \right| \alpha_{V} \right\rangle \right|^{2} P_{q_{1}}(\alpha_{q_{1}}) P_{\overline{q}_{2}}(\alpha_{\overline{q}_{2}})$$

We further average over α_V and obtain the α_V -averaged spin alignment.

$$\langle \rho_{00}^{V} \rangle = \frac{1 - \langle P_{q_1} P_{\overline{q}_2} \rangle}{3 + \langle P_{q_1} P_{\overline{q}_2} \rangle} \qquad \left\langle P_{q_1} P_{\overline{q}_2} \right\rangle = \sum_{\alpha_V} f_V(\alpha_V) \left\langle P_{q_1} P_{\overline{q}_2} \right\rangle_V$$

In general, α_V denotes a set of variables ($\alpha_{1V}, \alpha_{2V}, ..., \alpha_{jV}$).

We can integrate over only part of them and study the dependence on the others, i.e.,

$$\langle \boldsymbol{\rho}_{00}^{V} \rangle (\boldsymbol{\alpha}_{1V}, \boldsymbol{\alpha}_{2V}, \dots, \boldsymbol{\alpha}_{kV}) = \frac{1 - \left\langle \boldsymbol{P}_{q_{1}} \boldsymbol{P}_{\overline{q}_{2}} \right\rangle_{\alpha_{k+1V},\dots,\alpha_{jV}}}{3 + \left\langle \boldsymbol{P}_{q_{1}} \boldsymbol{P}_{\overline{q}_{2}} \right\rangle_{\alpha_{k+1V},\dots,\alpha_{jV}}}$$

$$\left\langle \boldsymbol{P}_{q_{1}} \boldsymbol{P}_{\overline{q}_{2}} \right\rangle_{\alpha_{k+1V},\dots,\alpha_{jV}} = \sum_{\alpha_{k+1V},\dots,\alpha_{jV}} f(\alpha_{1V}, \alpha_{2V}, \dots, \alpha_{jV}) \left\langle \boldsymbol{P}_{q_{1}} \boldsymbol{P}_{\overline{q}_{2}} \right\rangle_{V} / \sum_{\alpha_{k+1V},\dots,\alpha_{jV}} f(\alpha_{1V}, \alpha_{2V}, \dots, \alpha_{jV})$$

Take other degrees of freedom into account

The average is two folded:

$$\left\langle P_{q_1} P_{\overline{q}_2} \right\rangle = \left\langle \left\langle P_{q_1} P_{\overline{q}_2} \right\rangle_V \right\rangle_S$$

average inside the vector meson *V* average over the whole system or a sub-system *S*

$$\left\langle P_{q_1} P_{\overline{q}_2} \right\rangle_{V} = \sum_{\alpha_{q_1}, \alpha_{\overline{q}_2}} \left| \left\langle \alpha_{q_1}, \alpha_{\overline{q}_2} | \alpha_{V} \right\rangle \right|^2 P_{q_1}(\alpha_{q_1}) P_{\overline{q}_2}(\alpha_{\overline{q}_2}) \right.$$

$$\left\langle P_{q_1} P_{\overline{q}_2} \right\rangle_{\alpha_{k+1V,\dots,\alpha_{jV}}} = \frac{\sum_{\alpha_{k+1V,\dots,\alpha_{jV}}} f_S(\alpha_{1V}, \alpha_{2V}, \dots, \alpha_{jV}) \left\langle P_{q_1} P_{\overline{q}_2} \right\rangle_{V}}{\sum_{\alpha_{k+1V,\dots,\alpha_{jV}}} f_S(\alpha_{1V}, \alpha_{2V}, \dots, \alpha_{jV})}$$

Hyperon polarization v.s. vector meson spin alignment

For
$$q_1^{\uparrow} + \overline{q}_2^{\uparrow} \rightarrow V$$

 $\rho_{00}^V = \frac{1 - \langle P_{q_1} P_{\overline{q}_2} \rangle}{3 + \langle P_{q_1} P_{\overline{q}_2} \rangle}$
For $q_1^{\uparrow} + q_2^{\uparrow} + q_3^{\uparrow} \rightarrow H$

$$P_{H} = \left\langle \left\langle c_{1}P_{q_{1}} + c_{2}P_{q_{2}} + c_{3}P_{q_{3}} \right\rangle_{H} \right\rangle_{S} = \left\langle c_{1} \left\langle P_{q_{1}} \right\rangle_{H} + c_{2} \left\langle P_{q_{2}} \right\rangle_{H} + c_{3} \left\langle P_{q_{3}} \right\rangle_{H} \right\rangle_{S}$$
$$= c_{1} \left\langle \left\langle P_{q_{1}} \right\rangle_{H} \right\rangle_{S} + c_{2} \left\langle \left\langle P_{q_{2}} \right\rangle_{H} \right\rangle_{S} + c_{3} \left\langle \left\langle P_{q_{3}} \right\rangle_{H} \right\rangle_{S} = c_{1} \left\langle P_{q_{1}} \right\rangle + c_{2} \left\langle P_{q_{1}} \right\rangle + c_{3} \left\langle P_{q_{1}} \right\rangle$$

The STAR data show that: $\langle P_q P_{\overline{q}} \rangle \neq \langle P_q \rangle \langle P_{\overline{q}} \rangle$

One has to take fluctuations into account, so that: $\langle P_q P_{\overline{q}} \rangle \neq \langle P_q \rangle \langle P_{\overline{q}} \rangle$

By studying P_H , we study the average of quark polarization P_q ; by studying ρ_{00}^V , we study the correlation between P_q and $P_{\overline{q}}$.

Local correlation or long range correlation

One has to take fluctuations into account, i.e.,: $\langle P_q P_{\overline{q}} \rangle \neq \langle P_q \rangle \langle P_{\overline{q}} \rangle$

$$\left\langle P_{q}P_{\overline{q}}\right\rangle = \left\langle \left\langle P_{q}P_{\overline{q}}\right\rangle_{V}\right\rangle_{S}$$

average inside the vector meson V average over the whole system or a sub-system S

(1) local correlation: $\langle P_q P_{\overline{q}} \rangle_V \neq \langle P_q \rangle_V \langle P_{\overline{q}} \rangle_V$

(2) long range correlation: $\langle P_q P_{\overline{q}} \rangle_V = \langle P_q \rangle_V \langle P_{\overline{q}} \rangle_V$ $\langle \langle P_q \rangle_V \langle P_{\overline{q}} \rangle_V \rangle_S \neq \langle \langle P_q \rangle_V \rangle_S \langle \langle P_{\overline{q}} \rangle_V \rangle_S$

Vector meson spin alignment contains both contributions.

Vector meson spin alignment — model

Strong interaction exhibits itself differently in different stages

$$P_{s}^{\mu}(x,p) \approx \frac{1}{4m_{s}} \varepsilon^{\mu\nu\rho\sigma} \left(\omega_{\rho\sigma} + \frac{g_{\phi}}{(u \cdot p)T_{h}} F_{\rho\sigma}^{\phi} \right) p_{\nu}$$
$$P_{\bar{s}}^{\mu}(x,p) \approx \frac{1}{4m_{s}} \varepsilon^{\mu\nu\rho\sigma} \left(\omega_{\rho\sigma} - \frac{g_{\phi}}{(u \cdot p)T_{h}} F_{\rho\sigma}^{\phi} \right) p_{\nu}$$

talks by Xin-Li Sheng and Qun Wang

[1] Yang-guang Yang, Ren-hong Fang, Qun Wang, and Xin-Nian Wang, PRC 97, 034917 (2018).

[2] Xin-Li Sheng, Lucia Oliva, and Qun Wang, PRD 101, 096005 (2020).

[3] Xin-Li Sheng, Qun Wang and Xin-Nian Wang, PRD 102, 056013 (2020).

[4] Xin-Li Sheng, Lucia Oliva, Zuo-tang Liang, Qun Wang and Xin-Nian Wang, 2205.15689 [hep-ph], to appear in PRL.

[5] Xin-Li Sheng, Lucia Oliva, Zuo-tang Liang, Qun Wang and Xin-Nian Wang, 2206.05868 [hep-ph].

Local correlation or long range correlation

Can we separate local or long rang correlation experimentally?

Study $\Lambda - \overline{\Lambda}$ or $\Lambda - \Lambda$ spin correlations

ZTL & X.N. Wang

$$C_{NN}^{\Lambda\Lambda} \equiv \frac{N_{\Lambda\bar{\Lambda}}^{\uparrow\uparrow} + N_{\Lambda\bar{\Lambda}}^{\downarrow\downarrow} - N_{\Lambda\bar{\Lambda}}^{\uparrow\downarrow} - N_{\Lambda\bar{\Lambda}}^{\downarrow\uparrow}}{N_{\Lambda\bar{\Lambda}}^{\uparrow\uparrow} + N_{\Lambda\bar{\Lambda}}^{\downarrow\downarrow} + N_{\Lambda\bar{\Lambda}}^{\uparrow\downarrow} + N_{\Lambda\bar{\Lambda}}^{\downarrow\uparrow}}$$

Even, in general, $H_i - \overline{H}_j$ or $H_i - H_j$ spin correlations

$$C_{NN}^{H_i\overline{H}_j} \equiv \frac{N_{H_i\overline{H}_j}^{\uparrow\uparrow} + N_{H_i\overline{H}_j}^{\downarrow\downarrow} - N_{H_i\overline{H}_j}^{\uparrow\downarrow} - N_{H_i\overline{H}_j}^{\downarrow\uparrow}}{N_{H_i\overline{H}_j}^{\uparrow\uparrow} + N_{H_i\overline{H}_j}^{\downarrow\downarrow} + N_{H_i\overline{H}_j}^{\uparrow\downarrow} + N_{H_i\overline{H}_j}^{\downarrow\uparrow}}$$

sensitive to the long range correlation

because H_i and \overline{H}_i come from different phase space points

seems not so easy in experiments

Off-diagonal elements of $\widehat{\rho}^{V}$?

• ZTL & Xin-Nian Wang, PRL 94, 102301 (2005)

considered the average
$$\langle \hat{\rho}_q \rangle = \frac{1}{2} \begin{pmatrix} 1 + \langle P_q \rangle & 0 \\ 0 & 1 - \langle P_q \rangle \end{pmatrix}$$

i.e.,
$$\langle P_{qy} \rangle = \langle P_q \rangle$$
, $\langle P_{qz} \rangle = \langle P_{qx} \rangle = 0$, also $\langle P_{q_1y} P_{\overline{q}_2y} \rangle = \langle P_{q_1} \rangle \langle P_{\overline{q}_2} \rangle$

• The STAR data show that: $\langle P_q P_{\overline{q}} \rangle \neq \langle P_q \rangle \langle P_{\overline{q}} \rangle \quad \langle P_q P_{\overline{q}} \rangle \gg \langle P_q \rangle \langle P_{\overline{q}} \rangle$

indicates that the fluctuation $\Delta P_{qy}^2 \equiv \langle P_{qy}^2 \rangle - \langle P_{qy} \rangle^2 \sim \langle P_{qy}^2 \rangle \gg \langle P_{qy} \rangle^2$ i.e., compared to ΔP_{qy}^2 , we can even take $\langle P_{qy} \rangle \sim \langle P_{qz} \rangle = \langle P_{qx} \rangle = 0$ Similar fluctuations $\langle P_{qz}^2 \rangle$ and $\langle P_{qx}^2 \rangle$ for $\langle P_{qz} \rangle$ and $\langle P_{qx} \rangle$?

• take also the off-diagonal components into account

$$\widehat{\rho}_{q} = \frac{1}{2} \begin{pmatrix} 1 + P_{qy} & P_{qz} - iP_{qx} \\ P_{qz} + iP_{qx} & 1 - P_{qy} \end{pmatrix} \qquad \widehat{\rho}_{\overline{q}} = \frac{1}{2} \begin{pmatrix} 1 + P_{\overline{q}y} & P_{\overline{q}z} - iP_{\overline{q}x} \\ P_{\overline{q}z} - iP_{\overline{q}x} & 1 - P_{\overline{q}\overline{y}} \end{pmatrix}$$

Off-diagonal elements of $\hat{\rho}^{V}$?

In this case, we obtain

$$\rho_{00}^{V} = \frac{1 + \overrightarrow{P}_{q} \cdot \overrightarrow{P}_{\overline{q}} - 2P_{qy}P_{\overline{q}y}}{3 + \overrightarrow{P}_{q} \cdot \overrightarrow{P}_{\overline{q}}}$$

also the off-diagonal elements of $\widehat{
ho}^V$

$$\rho_{10}^{V} = \frac{P_{qz}(1 + P_{\bar{q}y}) + (1 + P_{qy})P_{\bar{q}z} - iP_{qx}(1 + P_{\bar{q}y}) - i(1 + P_{qy})P_{\bar{q}x}}{\sqrt{2}(3 + \vec{P}_{q} \cdot \vec{P}_{\bar{q}})}$$
$$\rho_{0-1}^{V} = \frac{P_{qz}(1 - P_{\bar{q}y}) + (1 - P_{qy})P_{\bar{q}z} - iP_{qx}(1 - P_{\bar{q}y}) - i(1 - P_{qy})P_{\bar{q}x}}{\sqrt{2}(3 + \vec{P}_{q} \cdot \vec{P}_{\bar{q}})}$$

$$p_{0-1}^{\nu} = \frac{q_{2} \cdot (q_{3}) \cdot (q_{3}) \cdot (q_{3})}{\sqrt{2}(3 + \vec{P}_{q} \cdot \vec{P}_{\bar{q}})}$$

$$\rho_{1-1}^{V} = \frac{P_{qz}P_{\bar{q}z} - P_{qx}P_{\bar{q}x} + i(P_{qx}P_{\bar{q}y} + P_{qy}P_{\bar{q}x})}{3 + \vec{P}_{q} \cdot \vec{P}_{\bar{q}}}$$

They should be sensitive to the local correlations.

Off-diagonal elements of $\hat{\rho}^{V}$?

Take the average

$$\begin{split} \langle \rho_{00}^{V} \rangle &= \frac{1 + \langle P_{qz} P_{\overline{q}z} \rangle + \langle P_{qx} P_{\overline{q}x} \rangle - \langle P_{qy} P_{\overline{q}y} \rangle}{3 + \langle P_{qz} P_{\overline{q}z} \rangle + \langle P_{qx} P_{\overline{q}x} \rangle + \langle P_{qy} P_{\overline{q}y} \rangle} \\ \langle \rho_{10}^{V} \rangle &= \frac{\langle P_{qz} P_{\overline{q}y} \rangle + \langle P_{qy} P_{\overline{q}z} \rangle - i \langle P_{qx} P_{\overline{q}y} \rangle - i \langle P_{qy} P_{\overline{q}x} \rangle}{\sqrt{2}(3 + \langle \vec{P}_{q} \cdot \vec{P}_{\overline{q}} \rangle)} \\ \langle \rho_{0-1}^{V} \rangle &= \frac{-\langle P_{qz} P_{\overline{q}y} \rangle - \langle P_{qy} P_{\overline{q}z} \rangle + i \langle P_{qx} P_{\overline{q}y} \rangle + i \langle P_{qy} P_{\overline{q}x} \rangle}{\sqrt{2}(3 + \langle \vec{P}_{q} \cdot \vec{P}_{\overline{q}} \rangle)} \\ \langle \rho_{1-1}^{V} \rangle &= \frac{\langle P_{qz} P_{\overline{q}z} \rangle - \langle P_{qx} P_{\overline{q}x} \rangle + i (\langle P_{qx} P_{\overline{q}y} \rangle + \langle P_{qy} P_{\overline{q}x} \rangle)}{3 + \langle \vec{P}_{q} \cdot \vec{P}_{\overline{q}} \rangle} \end{split}$$

They should be sensitive to the local correlations.

- Global hyperon polarization and global vector meson spin alignment have been observed experimentally.
- The global hyperon polarization is a measure of the average value of the global quark polarization in the system, while the global vector meson spin alignment measures the correlation between quark and anti-quark polarization.
- Correlation between the polarization of hyperon-hyperon or hyperonantihyperon can be sensitive to the long range correlation while offdiagonal elements of vector meson spin density matrix may provide important information on the local correlation.

Thank you for your attention!

For $V \to 1+2$, where 1 and 2 are two pseudoscalar mesons, we have $S_A = 1, \lambda_1 = \lambda_2 = 0$ e.g., $\rho \to \pi\pi$

$$W(\theta,\varphi) = N \sum_{M_A,M_A'} |H_A|^2 D_{M_A0}^{1*}(\varphi,\theta,-\varphi) D_{M_A'0}^1(\varphi,\theta,-\varphi) \langle M_A | \hat{\rho}_A | M_A' \rangle$$

$$= \frac{3}{4\pi} \left\{ \frac{1}{2} (\rho_{11} + \rho_{-1-1}) \sin^2 \theta + \rho_{00} \cos^2 \theta - \frac{1}{\sqrt{2}} \sin 2\theta \left[\cos \varphi \left(\operatorname{Re} \rho_{10} - \operatorname{Re} \rho_{-10} \right) - \sin \varphi \left(\operatorname{Im} \rho_{10} + \operatorname{Im} \rho_{-10} \right) \right] - \sin^2 \theta \left(\cos 2\varphi \operatorname{Re} \rho_{1-1} - \sin 2\varphi \operatorname{Im} \rho_{1-1} \right) \right\}$$

$$\int_0^{2\pi} d\varphi \, W(\theta, \varphi) = \frac{3}{4} [(1 - \rho_{00}) + (3\rho_{00} - 1)\cos^2 \theta]$$

Measurements

For $V \to 1+2$, where 1 and 2 are two spin-1/2 Fermions, i.e., $S_A = 1, \lambda_1 = \pm \frac{1}{2}, \lambda_2 = \pm \frac{1}{2}$

consider the case: (1) Helicity conservation: $\lambda_1 = -\lambda_2$, $\lambda = \pm 1$ (2) Space reflection invariance: $H_A(\lambda_1, \lambda_2) = H_A(-\lambda_1, -\lambda_2)$

only one independent helicity amplitude

e.g.,
$$J/\psi
ightarrow e^+e^-$$

$$W(\theta,\varphi) = \frac{3(1+\rho_{00})}{8\pi} [1+\lambda_{\theta}\cos^{2}\theta + \lambda_{\varphi}\sin^{2}\theta\cos2\varphi + \lambda_{\theta\varphi}\sin2\theta\cos\varphi + \lambda_{\theta\varphi}\sin2\theta\sin2\theta\sin\varphi]$$
$$+\lambda_{\varphi}^{\perp}\sin^{2}\theta\sin2\varphi + \lambda_{\theta\varphi}^{\perp}\sin2\theta\sin2\theta\sin\varphi]$$

$$\begin{split} \lambda_{\theta} &= \frac{1 - 3\rho_{00}}{1 + \rho_{00}} \qquad \lambda_{\varphi} = \frac{4\text{Re}\rho_{1-1}}{1 + \rho_{00}} \qquad \lambda_{\theta\varphi} = \frac{\sqrt{2}\text{Re}(\rho_{10} - \rho_{-10})}{1 + \rho_{00}} \\ \lambda_{\varphi}^{\perp} &= \frac{4\text{Im}\rho_{1-1}}{1 + \rho_{00}} \qquad \lambda_{\theta\varphi}^{\perp} = \frac{\sqrt{2}\text{Im}(\rho_{10} - \rho_{-10})}{1 + \rho_{00}} \end{split}$$