Relativistic spin dynamics for vector mesons

Xin-Li Sheng

Istituto Nazionale di Fisica Nucleare SEZIONE DI FIRENZE

"The 7th International Conference on Chirality, Vorticity, and Magnetic Field in Heavy Ion Collisions"

Jul. 15-19, 2023

www.bnl.gov/newsroom/news.php?a=120967

Contents

Istituto Nazionale di Fisica Nucleare SEZIONE DI FIRENZE

- Introduction
- Relativistic kinetic theory with spin for vector mesons
- ϕ meson's spin alignment

Summary

XLS, L. Oliva, Q. Wang, PRD 101, 096005 (2020); PRD 105, 099903 (2022) (erratum) XLS, L. Oliva, Z.-T. Liang, Q. Wang, X.-N. Wang, arXiv: 2205.15689, 2206.05868

Heavy-ion collisions

x (fm)

Istituto Nazionale di Fisica Nucleare **SEZIONE DI FIRENZE**

Spin alignment

Istituto Nazionale di Fisica Nucleare SEZIONE DI FIRENZE

• Spin alignment for a vector meson ($J^P = 1^-$) is 00-element ρ_{00} of its normalized spin density matrix

 ρ_{00} =1/3 if spin does not have a preferred direction

• Spin alignment is measured through polar angle distribution of decay products

G 1	($\rho_{+1,+1}$	$\rho_{+1,0}$	$\rho_{+1,-1}$
$\rho_{rs}^{S=1} =$		$\rho_{0,+1}$	$ ho_{00}$	$\rho_{0,-1}$
	$\left(\right)$	$\rho_{-1,+1}$	$ ho_{-1,0}$	$\rho_{-1,-1}$ /

 K^{*0}

 (\bar{s})

Processes	Examples	Polar angle distribution $W(\theta)$	Spin is converted to
Pairty-odd strong decay	$K^{*0} \to K^+ + \pi^-$ $\phi \to K^+ + K^-$	$\frac{3}{4} \left[1 - \rho_{00} + (3\rho_{00} - 1)\cos^2\theta \right]$	OAM
Dilepton decay	$J/\psi \to \mu^+ + \mu^-$	$\frac{3}{8} \left[1 + \rho_{00} + (1 - 3\rho_{00}) \cos^2 \theta \right]$	Spin

Ф

 \overline{S}

(s)

K. Schilling, P. Seyboth, G. E. Wolf, NPB 15, 397 (1970) [Erratum-ibid. B 18, 332 (1970)].

P. Faccioli, C. Lourenco, J. Seixas, H. K. Wohri, EPJC 69, 657-673 (2010)

J/ψ

 \overline{C}

nature		View all journals	Search Q	Log in
Explore content 🗸	About the journal ∽	Publish with us ∽		
nature > articles > a	article			
Article Published: 18 January 2023 Dattorn of global spin alignment of A and K*0 masons				
in heavy-ion collisions				
STAR Collaboration				
<u>Nature</u> 614, 244–248 (2023) <u>Cite this article</u>				
3084 Accesses 8 Citations 165 Altmetric Metrics				

Global spin alignment

Istituto Nazionale di Fisica Nucleare SEZIONE DI FIRENZE

Spin alignment along direction of global angular momentum

STAR, Nature 614, 244 (2023)

Talk by Subhash Singha

Theory prediction: XLS, L. Oliva, Q. Wang, PRD 101, 096005 (2020); PRD 105, 099903 (2022) (erratum)

Experiment results

Istituto Nazionale di Fisica Nucleare SEZIONE DI FIRENZE

- Spin alignment in isobar collisions
 - Talk by Subhash Singha

 Spin alignment of *J*/ψ in pp and Pb-Pb collisions

$$\lambda_{\theta} = \frac{1 - 3\rho_{00}}{1 + \rho_{00}} \approx -\frac{9}{4} \left(\rho_{00} - \frac{1}{3} \right)$$

ALICE, PLB 815 (2021) 136146; e-Print: 2204.10171

Talk by Xiao-Zhi Bai

Relation with quark polarization

Istituto Nazionale di Fisica Nucleare SEZIONE DI FIRENZE

Spin Alignment of Vector Mesons in Non-central A + A Collisions

PLB 629, 20 (2005).

Zuo-Tang Liang¹ and Xin-Nian $Wang^{2,1}$

¹Department of Physics, Shandong University, Jinan, Shandong 250100, China 'uclear Science Division, MS 70R0319, Lawrence Berkeley National Laboratory, Berkeley, California 9472 (Dated: November 5, 2018)

 Spin alignment of vector meson is determined by spin polarizations of constitute quark/antiquark

$$\rho_{00}^{V\,(\rm rec)} = \frac{1 - P_q P_{\bar{q}}}{3 + P_q P_{\bar{q}}} \approx \frac{1}{3} - \frac{4}{9} P_q P_{\bar{q}}$$

Estimation using global quark spin polarization

$$\begin{array}{l} P_s \approx P_A \approx 2\% \\ P_{\overline{s}} \approx P_{\overline{A}} \approx 2\% \end{array}$$

$$\rho_{00}^{\phi} - \frac{1}{3} \approx -1.7 \times 10^{-4}$$

Negative deviation from 1/3, order of 10^{-4}

Local spin polarization

Istituto Nazionale di Fisica Nucleare SEZIONE DI FIRENZE

• Numerical simulation for ϕ meson's spin alignment induced by local quark polarization

(thermal vorticity, shear tensor)

Talk by Cong Yi, July 19th, 11:50 a.m. (Parallel Session A)

"Helicity polarization and vorticity contribution to the spin alignment in hydrodynamic approaches"

Positive deviation from 1/3, order of 10^{-4}

Spin alignment

Istituto Nazionale di Fisica Nucleare SEZIONE DI FIRENZE

[1] ZT. Liang, XN. Wang, PLB 629, 20 (2005)	[7] D. Wagner, N. Weickgenannt, E. Speranza, PRR 5,	
[2] F. Becattini, L. Csernai, DJ. Wang, PRC 88, 034905	(2023) [8] M. Wei, M. Huang, arXiv:2303.01807	
[3] YG. Yang, RH. Fang, Q. Wang, XN. Wang, PRC 97, 034917 (2018)	[9] XLS, SY. Yang, YL. 280, D. Hou, arXiv:2209.01872	
[/] XI S L Oliva O Wang PRD 101 096005 (2020)	[10] B. Muller, DL. Yang, PRD 105, 1 (2022).	
[4] XLO, L. Oliva, Q. Wang, I'ND ToT, 050005 (2020)	[11] JH. Gao, PRD 104, 076016 (2021)	
[5] AL. Ala, H. Li, AG. Huang, HZ. Huang, PLB 617, 136325 (2021)	[12] XLS, L. Oliva, ZT. Liang, Q. Wang, XN. Wang, arXiv: 2205.15689, 2206.05868	
[6] F. Li, S. Liu, arXiv: 2206.11890	[13] A. Kumar, B. Muller, DL. Yang, arXiv: 2304.04181	

Contents

Istituto Nazionale di Fisica Nucleare SEZIONE DI FIRENZE

Introduction

- Relativistic kinetic theory with spin for vector mesons
- ϕ meson's spin alignment

Summary

Green functions

Istituto Nazionale di Fisica Nucleare **SEZIONE DI FIRENZE**

Dyson-Schwinger equation

Two-point Green function on the closed-time path

$$G_{\rm CTP}^{\mu\nu}(x_1, x_2) \equiv \left\langle T_C A_V^{\mu}(x_1) A_V^{\nu\dagger}(x_2) \right\rangle$$

 $G^{F}_{\mu\nu}(x_1, x_2)$

 x_2

 x_1

 t_0

P. Martin, J. S.Schwinger, PR 115 (1959) 1342.

L. P. Kadanoff and G. Baym, Quantum Statistical Mechanics (Benjamin, New York, 1962).

L.V. Keldysh, Zh. Eksp. Teor. Fiz. 47 (1964) 1515.

Wigner

function

Kadanoff-Baym equation INFN

Istituto Nazionale di Fisica Nucleare SEZIONE DI FIRENZE

 With help of Schwinger-Keldysh (closed-time path) formalism, we derive Kadanoff-Baym equation at leading order in spatial gradient

2

Comparing Kadanoff-Baym equation with its Hermitian conjugate, we are able to derive

Mass-shell condition $-(p^2 - m_V^2)G^{<,\mu\nu} + (p^{\mu}p_{\eta}G^{<,\mu\nu} + p^{\nu}p_{\eta}G^{<,\mu\eta}) = \cdots$

Boltzmann equation
$$p \cdot \partial_x G^{<,\mu\nu} - \frac{1}{4} (p^\mu \partial^x_\eta G^{<,\mu\nu} + p^\nu \partial^x_\eta G^{<,\mu\eta}) = \cdots$$

Kadanoff-Baym equation **INFN**

Istituto Nazionale di Fisica Nucleare SEZIONE DI FIRENZE

• Two-point Green function can be expressed in terms of matrix valued spin-dependent distributions (MVSD)

$$G_{\mu\nu}^{<}(x,p) = \int d^{4}y \, e^{ip \cdot y/\hbar} \left\langle A_{\nu}^{\dagger}(x_{2}) A_{\mu}(x_{1}) \right\rangle$$
$$A_{V}^{\mu}(x) = \sum_{\lambda=0,\pm 1} \int \frac{d^{3}\mathbf{p}}{(2\pi\hbar)^{3}} \frac{1}{2E_{\mathbf{p}}^{V}}$$
$$\times \left[\epsilon^{\mu}(\lambda,\mathbf{p}) a_{V}(\lambda,\mathbf{p}) e^{-ip \cdot x/\hbar} + \epsilon^{*\mu}(\lambda,\mathbf{p}) a_{V}^{\dagger}(\lambda,\mathbf{p}) e^{ip \cdot x/\hbar} \right]$$

$$\begin{aligned} G_{\mu\nu}^{<}(x,p) &= 2\pi\hbar\sum_{\lambda_{1},\lambda_{2}}\delta\left(p^{2}-m_{V}^{2}\right) \\ &\times\left\{\theta(p^{0})\epsilon_{\mu}\left(\lambda_{1},\mathbf{p}\right)\epsilon_{\nu}^{*}\left(\lambda_{2},\mathbf{p}\right)f_{\lambda_{1}\lambda_{2}}(x,\mathbf{p})\right. \\ &\left.+\theta(-p^{0})\epsilon_{\mu}^{*}\left(\lambda_{1},-\mathbf{p}\right)\epsilon_{\nu}\left(\lambda_{2},-\mathbf{p}\right)\right. \\ &\left.\times\left[\delta_{\lambda_{2}\lambda_{1}}+f_{\lambda_{2}\lambda_{1}}(x,-\mathbf{p})\right]\right\}, \end{aligned}$$

polarization vector for a meson with spin λ

creation/anihilation operator a_V , b_V^{\dagger} if meson is not self-conjugate

• MVSD for vector meson

$$f_{\lambda_{1}\lambda_{2}}(x,\mathbf{p}) \equiv \int \frac{d^{4}u}{2(2\pi\hbar)^{3}} \delta(p \cdot u) e^{-iu \cdot x/\hbar} \left\langle a_{V}^{\dagger} \left(\lambda_{2},\mathbf{p}-\frac{\mathbf{u}}{2}\right) a_{V} \left(\lambda_{1},\mathbf{p}+\frac{\mathbf{u}}{2}\right) \right\rangle$$
$$= 2E_{\mathbf{p}}^{V} \int \frac{dp^{0}}{2\pi\hbar} \theta(p^{0}) \epsilon^{*\mu}(\lambda_{1},\mathbf{p}) \epsilon^{\nu}(\lambda_{2},\mathbf{p}) G_{\mu\nu}^{<}(x,p) \qquad \text{Relation to Wigner function}$$
$$= 3f(x,\mathbf{p}) \rho_{\lambda_{1}\lambda_{2}}(x,\mathbf{p}) \qquad \text{Relation to spin-averaged}$$
distribution and normalized density matrix

$$f(x, \mathbf{p}) \equiv \frac{1}{3} \sum_{\lambda=0,\pm 1} f_{\lambda\lambda}(x, \mathbf{p}), \quad \sum_{\lambda=0,\pm 1} \rho_{\lambda\lambda}(x, \mathbf{p}) = 1$$

,,

Boltzmann equation

Istituto Nazionale di Fisica Nucleare SEZIONE DI FIRENZE

• Dyson-Schwinger equation

Matrix-form Boltzmann equation

XLS, L.Oliva, Z.-T.Liang, Q.Wang, X.-N.Wang, arXiv:2205.15689, 2206.05868.

Contribution from coalescence

Quark-antiquark-
meson vertex
$$\begin{array}{c} \mathcal{C}_{\text{coal}}^{\mu\nu}(x,\mathbf{k}) = \int \frac{d^{3}\mathbf{p}'}{(2\pi\hbar)^{2}} \frac{1}{E_{\mathbf{p}'}^{\bar{q}}E_{\mathbf{k}-\mathbf{p}'}^{q}} \delta\left(E_{\mathbf{k}}^{V} - E_{\mathbf{p}'}^{\bar{q}} - E_{\mathbf{k}-\mathbf{p}'}^{q}\right) \\ \times \operatorname{Tr}\left(\Gamma^{\nu}\right)p' \cdot \gamma - m_{\bar{q}}\right) \left[1 + \gamma_{5}\gamma \cdot P^{\bar{q}}(x,\mathbf{p}')\right] \\ \times \left[\Gamma^{\mu}\right](k - p') \cdot \gamma + m_{q}\right] \left[1 + \gamma_{5}\gamma \cdot P^{\bar{q}}(x,\mathbf{k}-\mathbf{p}')\right] \\ \times \left[f_{\bar{q}}(x,\mathbf{p}')f_{q}(x,\mathbf{k}-\mathbf{p}'), \right] \\ \times \left[f_{\bar{q}}(x,\mathbf{p}')f_{q}(x,\mathbf{k}-\mathbf{p}'), \right] \\ \end{array}$$

unpolarized quark/antiquark distributions

Spin alignment

Istituto Nazionale di Fisica Nucleare SEZIONE DI FIRENZE

• Neglecting space-derivatives and assuming that $f_{\lambda_1\lambda_2}^V = 0$ before hadronization stage t_0 , we obtain formal solution

$$f_{\lambda_1\lambda_2}^V(x,\mathbf{k}) \sim \frac{1 - \exp[-\mathcal{C}_{\text{diss}}(x,\mathbf{k})\Delta t]}{\mathcal{C}_{\text{diss}}(x,\mathbf{k})} \left[\epsilon_{\mu}^*(\lambda_1,\mathbf{k})\epsilon_{\nu}(\lambda_2,\mathbf{k})\mathcal{C}_{\text{coal}}^{\mu\nu}(x,\mathbf{k})\right] \qquad \Delta t = t - t_0$$

• Spin alignment only depend on coalescence process

$$\rho_{00} \equiv \frac{f_{00}^{V}}{f_{\pm 1,\pm 1}^{V} + f_{00}^{V} + f_{\pm 1,\pm 1}^{V}} = \frac{\epsilon_{\mu}^{*}(0,\mathbf{k})\epsilon_{\nu}(0,\mathbf{k})\mathcal{C}_{\text{coal}}^{\mu\nu}(x,\mathbf{k})}{\sum_{\lambda=0,\pm 1}\epsilon_{\mu}^{*}(\lambda,\mathbf{k})\epsilon_{\nu}(\lambda,\mathbf{k})\mathcal{C}_{\text{coal}}^{\mu\nu}(x,\mathbf{k})}$$

XLS, L.Oliva, Z.-T.Liang, Q.Wang, X.-N.Wang, arXiv:2205.15689, 2206.05868.

Mass splitting

Istituto Nazionale di Fisica Nucleare SEZIONE DI FIRENZE

• Dyson-Schwinger equation

Kadanoff-Baym equation for Wigner function

Mass-shell condition

 $(p^2 - m_V^2) f_{\lambda_1 \lambda_2}^V(x, \mathbf{k}) = \underbrace{\delta M_{\lambda_1 \lambda_2}}_{\sim \sim \sim \sim \sim \sim \sim} \qquad \begin{array}{l} \text{mass corrections induced by} \\ \text{interactions} \end{array}$

• Mass-splitting and spin alignment (for a thermodynamic equilibrium system)

$$\begin{array}{c} M_{V,0} = \overline{M} + \Delta \\ M_{V,\pm} = \overline{M} - \frac{\Delta}{2} \end{array} \qquad f_{\lambda} \sim \frac{1}{\exp\left(M_{V,\lambda}/T\right) - 1} \implies \rho_{00} \approx \frac{1}{3} - \frac{\Delta}{3T} + \mathcal{O}\left[\left(\frac{\Delta}{T}\right)^{2}\right]$$

• Also see: talks by Shuyun Yang and Minghua Wei for spin alignment of vector mesons induced by magnetic field and rotation in framework of NJL model

Contents

Istituto Nazionale di Fisica Nucleare SEZIONE DI FIRENZE

Introduction

- Relativistic kinetic theory with spin for vector mesons
- ϕ meson's spin alignment

Summary

Quark polarization

Istituto Nazionale di Fisica Nucleare SEZIONE DI FIRENZE

F.Becattini, V.Chandra, L.Del Zanna, E.Grossi, Annals Phys. 338, 32 (2013)

Polarizations of strange quark/antiquark in a thermal equilibrium system

$$P_{s}^{\mu}(x,\mathbf{p}) \approx \frac{1}{4m_{s}} \epsilon^{\mu\nu\alpha\beta} p_{\nu} \left[\omega_{\rho\sigma} + \frac{Q_{s}}{(u \cdot p)T} F_{\rho\sigma} + \frac{g_{\phi}}{(u \cdot p)T} F_{\rho\sigma}^{\phi} \right]$$

$$P_{s}^{\mu}(x,\mathbf{p}) \approx \frac{1}{4m_{s}} \epsilon^{\mu\nu\alpha\beta} p_{\nu} \left[\omega_{\rho\sigma} - \frac{Q_{s}}{(u \cdot p)T} F_{\rho\sigma} - \frac{g_{\phi}}{(u \cdot p)T} F_{\rho\sigma}^{\phi} \right]$$

$$P_{s}^{\mu}(x,\mathbf{p}) \approx \frac{1}{4m_{s}} \epsilon^{\mu\nu\alpha\beta} p_{\nu} \left[\omega_{\rho\sigma} - \frac{Q_{s}}{(u \cdot p)T} F_{\rho\sigma} - \frac{g_{\phi}}{(u \cdot p)T} F_{\rho\sigma}^{\phi} \right]$$

$$P_{s}^{\mu}(x,\mathbf{p}) \approx \frac{1}{4m_{s}} \epsilon^{\mu\nu\alpha\beta} p_{\nu} \left[\omega_{\rho\sigma} - \frac{Q_{s}}{(u \cdot p)T} F_{\rho\sigma} - \frac{g_{\phi}}{(u \cdot p)T} F_{\rho\sigma}^{\phi} \right]$$

$$P_{s}^{\mu}(x,\mathbf{p}) \approx \frac{1}{4m_{s}} \epsilon^{\mu\nu\alpha\beta} p_{\nu} \left[\omega_{\rho\sigma} - \frac{Q_{s}}{(u \cdot p)T} F_{\rho\sigma} - \frac{g_{\phi}}{(u \cdot p)T} F_{\rho\sigma}^{\phi} \right]$$

$$P_{s}^{\mu}(x,\mathbf{p}) \approx \frac{1}{4m_{s}} \epsilon^{\mu\nu\alpha\beta} p_{\nu} \left[\omega_{\rho\sigma} - \frac{Q_{s}}{(u \cdot p)T} F_{\rho\sigma} - \frac{g_{\phi}}{(u \cdot p)T} F_{\rho\sigma}^{\phi} \right]$$

$$P_{s}^{\mu}(x,\mathbf{p}) \approx \frac{1}{4m_{s}} \epsilon^{\mu\nu\alpha\beta} p_{\nu} \left[\omega_{\rho\sigma} - \frac{Q_{s}}{(u \cdot p)T} F_{\rho\sigma} - \frac{g_{\phi}}{(u \cdot p)T} F_{\rho\sigma}^{\phi} \right]$$

$$P_{s}^{\mu}(x,\mathbf{p}) \approx \frac{1}{4m_{s}} \epsilon^{\mu\nu\alpha\beta} p_{\nu} \left[\omega_{\rho\sigma} - \frac{Q_{s}}{(u \cdot p)T} F_{\rho\sigma} - \frac{g_{\phi}}{(u \cdot p)T} F_{\rho\sigma}^{\phi} \right]$$

$$P_{s}^{\mu}(x,\mathbf{p}) \approx \frac{1}{4m_{s}} \epsilon^{\mu\nu\alpha\beta} p_{\nu} \left[\omega_{\rho\sigma} - \frac{Q_{s}}{(u \cdot p)T} F_{\rho\sigma} - \frac{g_{\phi}}{(u \cdot p)T} F_{\rho\sigma}^{\phi} \right]$$

$$P_{s}^{\mu}(x,\mathbf{p}) \approx \frac{1}{4m_{s}} \epsilon^{\mu\nu\alpha\beta} p_{\nu} \left[\omega_{\rho\sigma} - \frac{Q_{s}}{(u \cdot p)T} F_{\rho\sigma} - \frac{g_{\phi}}{(u \cdot p)T} F_{\rho\sigma}^{\phi} \right]$$

$$P_{s}^{\mu}(x,\mathbf{p}) \approx \frac{1}{4m_{s}} \epsilon^{\mu\nu\alpha\beta} p_{\nu} \left[\omega_{\rho\sigma} - \frac{Q_{s}}{(u \cdot p)T} F_{\rho\sigma} - \frac{g_{\phi}}{(u \cdot p)T} F_{\rho\sigma}^{\phi} \right]$$

$$P_{s}^{\mu}(x,\mathbf{p}) \approx \frac{1}{4m_{s}} \epsilon^{\mu\nu\alpha\beta} p_{\nu} \left[\omega_{\rho\sigma} - \frac{Q_{s}}{(u \cdot p)T} F_{\rho\sigma} - \frac{g_{\phi}}{(u \cdot p)T} F_{\rho\sigma}^{\phi} \right]$$

$$P_{s}^{\mu}(x,\mathbf{p}) \approx \frac{1}{4m_{s}} \epsilon^{\mu\nu\alpha\beta} p_{\nu} \left[\omega_{\rho\sigma} - \frac{Q_{s}}{(u \cdot p)T} F_{\rho\sigma} - \frac{g_{\phi}}{(u \cdot p)T} F_{\rho\sigma}^{\phi} \right]$$

$$P_{s}^{\mu}(x,\mathbf{p}) \approx \frac{1}{4m_{s}} \epsilon^{\mu\nu\alpha\beta} p_{\nu} \left[\omega_{\rho\sigma} - \frac{Q_{s}}{(u \cdot p)T} F_{\rho\sigma}^{\phi} \right]$$

$$P_{s}^{\mu}(x,\mathbf{p}) \approx \frac{1}{4m_{s}} \epsilon^{\mu\nu\alpha\beta} p_{\nu} \left[\omega_{\sigma} - \frac{Q_{s}}{(u \cdot p)T} + \frac{Q_{s}}{(u \cdot p)T} F_{\rho\sigma}^{\phi} \right]$$

$$P_{s}^{\mu}(x,\mathbf{p}) \approx \frac{1}{4m_{s}} \epsilon^{\mu\nu\alpha\beta} p_{\nu} \left[\omega_{\sigma} - \frac{Q_{s}}{(u \cdot p)T} + \frac{Q_{s}}{(u \cdot p)T} \right]$$

$$P_{s}^{\mu}(x,\mathbf{p}) \approx \frac{1}{4m_{s}} \epsilon^{\mu\nu\alpha\beta} p_{\nu} \left[\omega_{\sigma} - \frac{Q_{s}}{(u \cdot p)T} + \frac{Q_{s}}{(u \cdot p)T} \right]$$

$$P_{s}^{\mu}($$

• Vector ϕ field has been used to explain the difference between polarizations of Λ and $\overline{\Lambda}$

L.P.Csernai, J.I.Kapusta, T.Welle, PRC 99, 021901 (2019)

Spin alignment

Istituto Nazionale di Fisica Nucleare **SEZIONE DI FIRENZE**

- Contribution from classical electromagnetic field to spin XLS, L.Oliva, Q.Wang, alignment is $< 10^{-3}$ PRD 101, 096005 (2020);
- Important features:
 - Cancellation for mixing terms (because of CP and reflection symmetries)
 - All fields appear in squares, spin alignment measures anisotropy of fluctuations in meson's rest frame

e.g., contribution from \mathbf{B}'_{ϕ} to spin alignment along *y*-direction $\propto (B'_{\phi,y})^2 - \frac{(B'_{\phi,x})^2 + (B'_{\phi,z})^2}{2}$

XLS, L.Oliva, Z.-T.Liang, Q.Wang, X.-N.Wang, arXiv:2205.15689, 2206.05868.

Heavy-ion collisions

Istituto Nazionale di Fisica Nucleare SEZIONE DI FIRENZE

• Lorentz transformation between lab frame and meson's rest frame

$$\begin{aligned} \mathbf{B}_{\phi}' &= \gamma \mathbf{B}_{\phi} - \gamma \mathbf{v} \times \mathbf{E}_{\phi} + (1 - \gamma) \frac{\mathbf{v} \cdot \mathbf{B}_{\phi}}{v^{2}} \mathbf{v}, \\ \mathbf{E}_{\phi}' &= \gamma \mathbf{E}_{\phi} + \gamma \mathbf{v} \times \mathbf{B}_{\phi} + (1 - \gamma) \frac{\mathbf{v} \cdot \mathbf{E}_{\phi}}{v^{2}} \mathbf{v}, \\ \boldsymbol{\omega}' &= \gamma \boldsymbol{\omega} - \gamma \mathbf{v} \times \boldsymbol{\varepsilon} + (1 - \gamma) \frac{\mathbf{v} \cdot \boldsymbol{\omega}}{v^{2}} \mathbf{v}, \\ \boldsymbol{\varepsilon}' &= \gamma \boldsymbol{\varepsilon} + \gamma \mathbf{v} \times \boldsymbol{\omega} + (1 - \gamma) \frac{\mathbf{v} \cdot \boldsymbol{\varepsilon}}{v^{2}} \mathbf{v}, \end{aligned} \qquad \boxed{\gamma \equiv \frac{E_{\mathbf{k}}^{\phi}}{m_{\phi}}, \quad \mathbf{v} \equiv \frac{\mathbf{k}}{E_{\mathbf{k}}^{\phi}}}$$

• Assumptions for field fluctuations

 $\left\langle (\omega_i)^2 \right\rangle = \left\langle (\varepsilon_i)^2 \right\rangle = 0$ $\left\langle (g_{\phi} \mathbf{B}_{x,y}^{\phi} / T_{\mathrm{h}})^2 \right\rangle = \left\langle (g_{\phi} \mathbf{E}_{x,y}^{\phi} / T_{\mathrm{h}})^2 \right\rangle \equiv F_T^2$ $\left\langle (g_{\phi} \mathbf{B}_z^{\phi} / T_{\mathrm{h}})^2 \right\rangle = \left\langle (g_{\phi} \mathbf{E}_z^{\phi} / T_{\mathrm{h}})^2 \right\rangle \equiv F_z^2$

• Spectra of ϕ meson

$$\frac{dN}{d^2\mathbf{k}_T dy} = \frac{1}{4\pi} \left[1 + 2v_2(k_T)\cos(2\phi)\right] \frac{dN}{k_T dk_T dy}$$

STAR collaboration, PRL 99,112301 (2007); PRC 79, 064903 (2009); PRC 88,014902 (2013); PRC 102, 034909(2020). Fluctuations along transverse direction are assumed to be different from fluctuations along longitudinal directions

Fitting experiment datas

Istituto Nazionale di Fisica Nucleare SEZIONE DI FIRENZE

• Taking fluctuations of transverse and longitudinal fields as two independent parameters.

 $\left\langle (g_{\phi} \mathbf{B}_{x,y}^{\phi}/T_{\mathrm{h}})^{2} \right\rangle = \left\langle (g_{\phi} \mathbf{E}_{x,y}^{\phi}/T_{\mathrm{h}})^{2} \right\rangle \equiv F_{T}^{2} \qquad \left\langle (g_{\phi} \mathbf{B}_{z}^{\phi}/T_{\mathrm{h}})^{2} \right\rangle = \left\langle (g_{\phi} \mathbf{E}_{z}^{\phi}/T_{\mathrm{h}})^{2} \right\rangle \equiv F_{z}^{2}$

Model predictions

Istituto Nazionale di Fisica Nucleare SEZIONE DI FIRENZE

• With our theoretical model, we predict transverse momentum and azimuthal angle dependence of ϕ meson's spin alignment, which can be verified by future experiments.

XLS, L.Oliva, Z.-T.Liang, Q.Wang, X.-N.Wang, arXiv:2205.15689.

k_T dependence

Istituto Nazionale di Fisica Nucleare SEZIONE DI FIRENZE

Calculated ρ_{00}^{γ} as functions of ϕ meson's transverse momentum, in comparison with STAR data for Au+Au collisions in 0-80% centrality region.

STAR, Nature 614, 244 (2023)

Shaded error bands from uncetainties of extracted parameters F_T^2 and F_z^2

XLS, L.Oliva, Z.-T.Liang, Q.Wang, X.-N.Wang, arXiv:2205.15689.

Summary

- We derive a relativistic Boltzmann equation for vector mesons with spin
- Spin alignment measures anisotropy of fluctuations in meson's rest frame
- Using two parameters (fluctuations for transverse and longitudinal components of strong ϕ field), we reproduce most of recent STAR data for ϕ meson spin alignment
- With our model, we predict azimuthal angle dependence of ϕ meson's spin alignment

Outlook

- First-principle calculation for fluctuations of ϕ fields
- Spin alignment of heavy quarkonium (J/ψ in Pb-Pb collisions) anisotropy of gluon field fluctuations ?

Related talks

Istituto Nazionale di Fisica Nucleare SEZIONE DI FIRENZE

Experiment Spin alignment STAR measurements **Subhash Singha 7/15 3:00 p.m.**

Vector meson polarization measurements in pp and Pb--Pb collisions with ALICE at the LHC Xiaozhi Bai 7/19 10:10 a.m. (Parallel Session A)

Tensor polarization and spectral properties of vector meson in QCD medium **Shuai Liu 7/17 4:00 p.m.**

Mass splitting and spin alignment for ϕ mesons in a magnetic fielin NJL model **Shuyun Yang 7/18 2:50 p.m. (Parallel Session B)**

Holographic spin alignment of J/ψ in anisotropic plasma Yan-Qing Zhao 7/18 3:43 p.m. (Parallel Session A)

Spin alignment of vector mesons from quark dynamics in a rotating medium Minghua Wei 7/18 5:55 p.m. (Parallel Session A)

Helicity polarization and vorticity contribution to the spin alignment in hydrodynamic approaches Cong Yi 7/19 11:50 a.m. (Parallel Session A)

Spin alignment formula for vector bosons at local equilibrium **Zhong-Hua Zhang 7/19 12:05 p.m. (Parallel Session A)**

Thank you!

Strong force

Istituto Nazionale di Fisica Nucleare SEZIONE DI FIRENZE

- Strong force is a fundamental interaction that acts between quarks.
- At high temperatures, strong interactions are mediated by gluons. (Quantum Chromodynamics)
- At low temperatures, strong interactions are mediated by mesons, proposed by Yukawa in 1935.

H. Yukawa, Proc. Phys. Math. Soc. Jap. 17, 48 (1935)

• Effective Lagrangian for a quark-meson model with scalar and vector mesons.

$$\mathcal{L}_{\text{eff}}(x) = \overline{\psi}(x) \left[i\partial \cdot \gamma - (m_0 + g_\sigma \sigma) - g_V \gamma \cdot V \right] \psi(x) + \frac{1}{2} \left(\partial_\mu \sigma \partial^\mu \sigma - m_\sigma^2 \sigma^2 \right) + \frac{1}{2} m_V^2 V_\mu V^\mu - \frac{1}{4} V^{\mu\nu} V_{\mu\nu}$$

strong interactions between s/\overline{s} quarks are mediated by vector ϕ field \longrightarrow Short wave-length: quantum fields

Long wave-length: classical fields

(particles)

Relation with quark polarization

Istituto Nazionale di Fisica Nucleare SEZIONE DI FIRENZE

• Contributions from polarizations along all three space directions

X.-L. Xia, H. Li, X.-G. Huang, H.-Z. Huang, PLB 817, 136325 (2021)

In order to explain significant deviation from 1/3, we need

1. Local polarizations for quark/antiquark are large enough

$$|\mathbf{P}_{q/\bar{q}}| \gtrsim 0.1$$
 if $\rho_{00} - \frac{1}{3} \approx 0.01$

2. Significant anisotropy

$$\langle P_q^y P_{\bar{q}}^y \rangle \gg \text{or} \ll \frac{\langle P_q^x P_{\bar{q}}^x \rangle + \langle P_q^z P_{\bar{q}}^z \rangle}{2}$$