Spin transport (and hydrodynamics) with nonlocal collisions

David Wagner
in collaboration with

Nora Weickgenannt, Enrico Speranza, and Dirk Rischke
based mainly on

```
NW, ES, X.-L. Sheng, Q. Wang, DHR, Phys.Rev.D 104 (2021) 1, }01602
    NW, DW, ES, DHR, Phys.Rev.D 106 (2022) 9, 096014
        DW, NW, ES, Phys.Rev.Res. }5\mathrm{ (2023) 1,013187
        DW, NW, DHR, Phys.Rev.D 106 (2022) 11, 116021
        DW, NW, ES, 2306.05936 (2023)
```

Chirality, Vorticity \& Magnetic Field in HIC | 17.07.2023

Global Λ-polarization

- Global polarization: polarization of Λ-hyperons along angular-momentum direction

L. Adamczyk et al. (STAR), Nature 548 (2017) 62

Global Λ-polarization

- Global polarization: polarization of Λ-hyperons along angular-momentum direction
- Can be well explained by considering local equilibrium on freeze-out hypersurface $S_{\varpi}^{\mu}=-\epsilon^{\mu \nu \alpha \beta} k_{\nu} \frac{\int \mathrm{d} \Sigma_{\lambda} k^{\lambda} f_{0}\left(1-f_{0}\right) \varpi_{\alpha \beta}}{8 m \int \mathrm{~d} \Sigma_{\lambda} k^{\lambda} f_{0}}$

L. Adamczyk et al. (STAR), Nature 548 (2017) 62

$$
\varpi_{\mu \nu}:=-\frac{1}{2}\left(\partial_{\mu} \beta_{\nu}-\partial_{\nu} \beta_{\mu}\right), \beta^{\mu}:=u^{\mu} / T, f_{0}=\left[\exp \left(u^{\mu} k_{\mu} / T\right)+1\right]^{-1}
$$

Local Λ-polarization

- Local polarization:

Angle-dependent polarization of Λ-hyperons along beam-direction

F. Becattini, M. Buzzegoli, G. Inghirami, I. Karpenko, A.

Palermo, PRL 127 (2021) 272302
B. Fu, S. Y. F. Liu, L. Pang, H. Song, Y. Yin, PRL 127
(2021) 142301

Local Λ-polarization

- Local polarization:

Angle-dependent polarization of Λ-hyperons along beam-direction

■ Could only be explained recently by incorporating shear effects (neglecting temperature gradients) $S_{\xi}^{\mu}=-\epsilon^{\mu \nu \alpha \beta} k_{\nu} \frac{\int \mathrm{d} \Sigma_{\lambda} k^{\lambda} f_{0}\left(1-f_{0}\right) \hat{t}_{\alpha} \frac{k^{\gamma}}{k^{0}} \Xi_{\gamma \beta}}{4 m T \int \mathrm{~d} \Sigma_{\lambda} k^{\lambda} f_{0}}$

F. Becattini, M. Buzzegoli, G. Inghirami, I. Karpenko, A.

Palermo, PRL 127 (2021) 272302
B. Fu, S. Y. F. Liu, L. Pang, H. Song, Y. Yin, PRL 127
(2021) 142301

$$
\omega_{\mu \nu}:=\frac{1}{2}\left(\partial_{\mu} u_{\nu}-\partial_{\nu} u_{\mu}\right), \Xi_{\mu \nu}:=\frac{1}{2}\left(\partial_{\mu} u_{\nu}+\partial_{\nu} u_{\mu}\right), \Delta^{\mu \nu}:=g^{\mu \nu}-u^{\mu} u^{\nu}
$$

Alignment of ϕ-mesons

- Spin-1 particles feature tensor polarization ($\hat{=}$ alignment)

STAR collaboration, arXiv:2204.02302 (2022)

Alignment of ϕ-mesons

- Spin-1 particles feature tensor polarization ($\hat{=}$ alignment)
- Larger than expected
- Some theoretical developments, but no definitive answer yet
X.-L. Xia, H. Li, X-G. Huang, H.-Z. Huang,

PLB 817 (2021) 136325
X.-L. Sheng, L. Oliva, Z.-T. Liang, Q. Wang,
X.-N. Wang, arXiv:2206.05868 (2022)
F. Li, S. Y. F. Liu, arXiv:2206.11890 (2022)

DW, NW, ES, 2207.01111 (2022)

STAR collaboration, arXiv:2204.02302 (2022)

Alignment of ϕ-mesons

- Spin-1 particles feature tensor polarization ($\hat{=}$ alignment)
- Larger than expected
- Some theoretical developments, but no definitive answer yet
X.-L. Xia, H. Li, X-G. Huang, H.-Z. Huang,

PLB 817 (2021) 136325
X.-L. Sheng, L. Oliva, Z.-T. Liang, Q. Wang,
X.-N. Wang, arXiv:2206.05868 (2022)
F. Li, S. Y. F. Liu, arXiv:2206.11890 (2022) DW, NW, ES, 2207.01111 (2022)

- Can spin- 1 hydrodynamics help explain this?

STAR collaboration, arXiv:2204.02302 (2022)

Spin Hydrodynamics: Basics

- Hydrodynamics is based on conservation laws
- Consider a system of uncharged fields
\rightarrow Should conserve energy-momentum and total angular momentum

Spin Hydrodynamics: Basics

- Hydrodynamics is based on conservation laws
- Consider a system of uncharged fields
\rightarrow Should conserve energy-momentum and total angular momentum

Conservation laws

$$
\begin{align*}
\partial_{\mu} T^{\mu \nu} & =0 \tag{1a}\\
\partial_{\lambda} J^{\lambda \mu \nu}=: \partial_{\lambda} S^{\lambda \mu \nu}+T^{[\mu \nu]} & =0 \tag{1b}
\end{align*}
$$

$$
A^{[\mu} B^{\nu]}:=A^{\mu} B^{\nu}-A^{\nu} B^{\mu}
$$

Spin Hydrodynamics: Basics

- Hydrodynamics is based on conservation laws
- Consider a system of uncharged fields
\rightarrow Should conserve energy-momentum and total angular momentum

Conservation laws

$$
\begin{align*}
\partial_{\mu} T^{\mu \nu} & =0 \tag{1a}\\
\partial_{\lambda} J^{\lambda \mu \nu}=: \partial_{\lambda} S^{\lambda \mu \nu}+T^{[\mu \nu]} & =0 \tag{1b}
\end{align*}
$$

- 10 equations for $16+24$ quantities

$$
A^{[\mu} B^{\nu]}:=A^{\mu} B^{\nu}-A^{\nu} B^{\mu}
$$

Spin Hydrodynamics: Basics

- Hydrodynamics is based on conservation laws
- Consider a system of uncharged fields
\rightarrow Should conserve energy-momentum and total angular momentum

Conservation laws

$$
\begin{align*}
\partial_{\mu} T^{\mu \nu} & =0 \tag{1a}\\
\partial_{\lambda} J^{\lambda \mu \nu}=: \partial_{\lambda} S^{\lambda \mu \nu}+T^{[\mu \nu]} & =0 \tag{1b}
\end{align*}
$$

- 10 equations for $16+24$ quantities
- Additional information about dissipative quantities has to be provided \rightarrow Use kinetic theory as effective microscopic model

$$
A^{[\mu} B^{\nu]}:=A^{\mu} B^{\nu}-A^{\nu} B^{\mu}
$$

Spin Hydrodynamics: Basics

- Hydrodynamics is based on conservation laws
- Consider a system of uncharged fields
\rightarrow Should conserve energy-momentum and total angular momentum

Conservation laws

$$
\begin{align*}
\partial_{\mu} T^{\mu \nu} & =0 \tag{1a}\\
\partial_{\lambda} J^{\lambda \mu \nu}=: \partial_{\lambda} S^{\lambda \mu \nu}+T^{[\mu \nu]} & =0 \tag{1b}
\end{align*}
$$

- 10 equations for $16+24$ quantities
- Additional information about dissipative quantities has to be provided \rightarrow Use kinetic theory with spin as effective microscopic model

$$
A^{[\mu} B^{\nu]}:=A^{\mu} B^{\nu}-A^{\nu} B^{\mu}
$$

Spin Hydrodynamics: Basics

- Hydrodynamics is based on conservation laws
- Consider a system of uncharged fields
\rightarrow Should conserve energy-momentum and total angular momentum

Conservation laws

$$
\begin{align*}
\partial_{\mu} T^{\mu \nu} & =0 \tag{1a}\\
\partial_{\lambda} J^{\lambda \mu \nu}=: \partial_{\lambda} S^{\lambda \mu \nu}+T^{[\mu \nu]} & =0 \tag{1b}
\end{align*}
$$

- 10 equations for $16+24$ quantities
- Additional information about dissipative quantities has to be provided \rightarrow Use kinetic theory with spin as effective microscopic model
- Rest of the presentation:
- Construct such a kinetic theory
- Perform hydrodynamic limit
- Obtain expressions for observables

$$
A^{[\mu} B^{\nu]}:=A^{\mu} B^{\nu}-A^{\nu} B^{\mu}
$$

How to: Quantum kinetic theory

- Spin is a quantum property
\rightarrow Start from quantum field theory
\rightarrow Use Wigner-function formalism

How to: Quantum kinetic theory

- Spin is a quantum property
\rightarrow Start from quantum field theory
\rightarrow Use Wigner-function formalism

Wigner function (Spin 1)

$$
W^{\mu \nu}(x, k):=-\frac{2}{(2 \pi \hbar)^{4} \hbar} \int \mathrm{~d}^{4} v e^{-i k \cdot y / \hbar}\left\langle: V^{\dagger \mu}(x+y / 2) V^{\nu}(x-y / 2):\right\rangle
$$

How to: Quantum kinetic theory

- Spin is a quantum property
\rightarrow Start from quantum field theory
\rightarrow Use Wigner-function formalism

Wigner function (Spin 1)

$$
W^{\mu \nu}(x, k):=-\frac{2}{(2 \pi \hbar)^{4} \hbar} \int \mathrm{~d}^{4} v e^{-i k \cdot y / \hbar}\left\langle: V^{\dagger \mu}(x+y / 2) V^{\nu}(x-y / 2):\right\rangle
$$

- Determines a quantum phase-space distribution function
- Equations of motion follow from field equations
- Determined by Lagrangian $\mathcal{L}_{0}+\mathcal{L}_{\text {int }}$

How to: Quantum kinetic theory

- Spin is a quantum property
\rightarrow Start from quantum field theory
\rightarrow Use Wigner-function formalism

Wigner function (Spin 1)

$$
W^{\mu \nu}(x, k):=-\frac{2}{(2 \pi \hbar)^{4} \hbar} \int \mathrm{~d}^{4} v e^{-i k \cdot y / \hbar}\left\langle: V^{\dagger \mu}(x+y / 2) V^{\nu}(x-y / 2):\right\rangle
$$

- Determines a quantum phase-space distribution function
- Equations of motion follow from field equations
- Determined by Lagrangian $\mathcal{L}_{0}+\mathcal{L}_{\text {int }}$
- Independent components: scalar f_{K}, axial vector G^{μ} and traceless symmetric tensor $F_{K}^{\mu \nu}$

$$
\begin{aligned}
f_{K} & :=(1 / 3) K_{\mu \nu} W^{\mu \nu}, G^{\mu}:=-(i / 2 m) \epsilon^{\mu \nu \alpha \beta} k_{\nu} W_{\alpha \beta}, F_{K}^{\mu \nu}:=K_{\alpha \beta}^{\mu \nu} W^{\alpha \beta} \\
K^{\mu \nu} & :=g^{\mu \nu}-k^{\mu} k^{\nu} / m^{2}, K_{\alpha \beta}^{\mu \nu}:=\left(K_{\alpha}^{\mu} K_{\beta}^{\nu}+K_{\beta}^{\mu} K_{\alpha}^{\nu}\right) / 2-1 / 3 K^{\mu \nu} K_{\alpha \beta}
\end{aligned}
$$

Extending phase space

Boltzmann equations

- Not one, but nine equations in (x, k)-phase space

$$
k \cdot \partial f_{K}(x, k)=\mathcal{C}_{K}, \quad k \cdot \partial G^{\mu}(x, k)=\mathcal{C}_{G}^{\mu}, \quad k \cdot \partial F_{K}^{\mu \nu}(x, k)=\mathcal{C}_{K}^{\mu \nu}
$$

Extending phase space

Boltzmann equations

- Not one, but nine equations in (x, k)-phase space

$$
k \cdot \partial f_{K}(x, k)=\mathcal{C}_{K}, \quad k \cdot \partial G^{\mu}(x, k)=\mathcal{C}_{G}^{\mu}, \quad k \cdot \partial F_{K}^{\mu \nu}(x, k)=\mathcal{C}_{K}^{\mu \nu}
$$

- Way to compactify this: Enlarge phase space from (x, k) to (x, k, \mathfrak{s})

Extending phase space

Boltzmann equations

- Not one, but nine equations in (x, k)-phase space

$$
k \cdot \partial f_{K}(x, k)=\mathcal{C}_{K}, \quad k \cdot \partial G^{\mu}(x, k)=\mathcal{C}_{G}^{\mu}, \quad k \cdot \partial F_{K}^{\mu \nu}(x, k)=\mathcal{C}_{K}^{\mu \nu}
$$

- Way to compactify this: Enlarge phase space from (x, k) to (x, k, \mathfrak{s})
- Measure $\mathrm{d} S:=\frac{3 m}{2 \sigma \pi} \mathrm{~d}^{4} \mathfrak{s} \delta\left[\mathfrak{s}^{2}+\sigma^{2}\right] \delta(k \cdot \mathfrak{s})$

Extending phase space

Boltzmann equations

- Not one, but nine equations in (x, k)-phase space

$$
k \cdot \partial f_{K}(x, k)=\mathcal{C}_{K}, \quad k \cdot \partial G^{\mu}(x, k)=\mathcal{C}_{G}^{\mu}, \quad k \cdot \partial F_{K}^{\mu \nu}(x, k)=\mathcal{C}_{K}^{\mu \nu}
$$

- Way to compactify this: Enlarge phase space from (x, k) to (x, k, \mathfrak{s})
- Measure $\mathrm{d} S:=\frac{3 m}{2 \sigma \pi} \mathrm{~d}^{4} \mathfrak{s} \delta\left[\mathfrak{s}^{2}+\sigma^{2}\right] \delta(k \cdot \mathfrak{s})$

Boltzmann equation in extended phase space

$$
\begin{equation*}
\mathfrak{f}(x, k, \mathfrak{s}):=f_{K}-\mathfrak{s}_{\mu} G^{\mu}+\frac{5}{4} \mathfrak{s}_{\mu} \mathfrak{s}_{\nu} F_{K}^{\mu \nu} \tag{2}
\end{equation*}
$$

- Only on-shell parts $\mathfrak{f}(x, k, \mathfrak{s})=\delta\left(k^{2}-m^{2}\right) f(x, k, \mathfrak{s})$ contribute

$$
\begin{equation*}
k \cdot \partial f(x, k, \mathfrak{s})=\mathfrak{C}[f] \tag{3}
\end{equation*}
$$

$$
\mathfrak{C}:=\mathcal{C}_{K}-\mathfrak{s}_{\mu} \mathcal{C}_{G}^{\mu}+\frac{5}{4} \mathfrak{s}_{\mu} \mathfrak{s}_{\nu} \mathcal{C}_{K}^{\mu \nu}
$$

Collision term

Collision kernel

$$
\begin{align*}
\mathfrak{C}[f]= & \frac{1}{2} \int \mathrm{~d} \Gamma_{1} \mathrm{~d} \Gamma_{2} \mathrm{~d} \Gamma^{\prime} \mathrm{d} \bar{S}(k) \delta^{(4)}\left(k_{1}+k_{2}-k-k^{\prime}\right) \mathcal{W} \\
& \times\left[f\left(x+\Delta_{1}-\Delta, k_{1}, \mathfrak{s}_{1}\right) f\left(x+\Delta_{2}-\Delta, k_{2}, \mathfrak{F}_{2}\right)\right. \\
& \left.-f(x, k, \overline{\mathfrak{s}}) f\left(x+\Delta^{\prime}-\Delta, k^{\prime}, \mathfrak{s}^{\prime}\right)\right] \tag{4}
\end{align*}
$$

$$
\mathrm{d} \Gamma:=2 \mathrm{~d}^{4} k \delta\left(k^{2}-m^{2}\right) \mathrm{d} S(k)
$$

Collision term

Collision kernel

$$
\begin{align*}
\mathfrak{C}[f]= & \frac{1}{2} \int \mathrm{~d} \Gamma_{1} \mathrm{~d} \Gamma_{2} \mathrm{~d} \Gamma^{\prime} \mathrm{d} \bar{S}(k) \delta^{(4)}\left(k_{1}+k_{2}-k-k^{\prime}\right) \mathcal{W} \\
& \times\left[f\left(x+\Delta_{1}-\Delta, k_{1}, \mathfrak{s}_{1}\right) f\left(x+\Delta_{2}-\Delta, k_{2}, \mathfrak{s}_{2}\right)\right. \\
& \left.-f(x, k, \overline{\mathfrak{s}}) f\left(x+\Delta^{\prime}-\Delta, k^{\prime}, \mathfrak{s}^{\prime}\right)\right] \tag{4}
\end{align*}
$$

- Contributions inside the collision term have gradient corrections

$$
\begin{equation*}
f(x, k, \mathfrak{s})+\Delta^{\mu} \partial_{\mu} f(x, k, \mathfrak{s}) \approx f(x+\Delta, k, \mathfrak{s}) \tag{5}
\end{equation*}
$$

- A (momentum- and spin-dependent) spacetime shift Δ^{μ} enters \rightarrow Particles do not scatter at the same spacetime point!

$$
\mathrm{d} \Gamma:=2 \mathrm{~d}^{4} k \delta\left(k^{2}-m^{2}\right) \mathrm{d} S(k)
$$

Collision term

Collision kernel

$$
\begin{align*}
\mathfrak{C}[f]= & \frac{1}{2} \int \mathrm{~d} \Gamma_{1} \mathrm{~d} \Gamma_{2} \mathrm{~d} \Gamma^{\prime} \mathrm{d} \bar{S}(k) \delta^{(4)}\left(k_{1}+k_{2}-k-k^{\prime}\right) \mathcal{W} \\
& \times\left[f\left(x+\Delta_{1}-\Delta, k_{1}, \mathfrak{s}_{1}\right) f\left(x+\Delta_{2}-\Delta, k_{2}, \mathfrak{s}_{2}\right)\right. \\
& \left.-f(x, k, \overline{\mathfrak{s}}) f\left(x+\Delta^{\prime}-\Delta, k^{\prime}, \mathfrak{s}^{\prime}\right)\right] \tag{4}
\end{align*}
$$

- Contributions inside the collision term have gradient corrections

$$
\begin{equation*}
f(x, k, \mathfrak{s})+\Delta^{\mu} \partial_{\mu} f(x, k, \mathfrak{s}) \approx f(x+\Delta, k, \mathfrak{s}) \tag{5}
\end{equation*}
$$

- A (momentum- and spin-dependent) spacetime shift Δ^{μ} enters \rightarrow Particles do not scatter at the same spacetime point!
- This enables a conversion of orbital and spin angular momenta

$$
\mathrm{d} \Gamma:=2 \mathrm{~d}^{4} k \delta\left(k^{2}-m^{2}\right) \mathrm{d} S(k)
$$

Nonlocal collisions

Spacetime shifts

$$
\begin{align*}
\Delta^{\mu}:= & \frac{1}{3} \frac{1}{\mathcal{W}} \frac{(2 \pi \hbar)^{3}}{32} \frac{i \hbar}{m^{2}} M^{\gamma_{1} \gamma_{2} \delta_{1} \delta_{2}} M^{\zeta_{1} \zeta_{2} \eta_{1} \eta_{2}} h_{1, \gamma_{1} \eta_{1}} h_{2, \gamma_{2} \eta_{2}} h_{\zeta_{2} \delta_{2}}^{\prime} \\
& \times\left(H^{\mu}{ }_{\delta_{1}} k_{\zeta_{1}}-k_{\delta_{1}} H_{\zeta_{1}}{ }^{\mu}\right) \tag{6}
\end{align*}
$$

- Depend on the transfer-matrix elements

$$
\begin{equation*}
\left\langle 11^{\prime}\right| \widehat{t}\left|22^{\prime}\right\rangle=\epsilon_{1, \alpha}^{*} \epsilon_{1^{\prime}, \beta}^{*} \epsilon_{2, \gamma} \epsilon_{2^{\prime}, \delta} M^{\alpha \beta \gamma \delta} \tag{7}
\end{equation*}
$$

- Manifestly covariant
\rightarrow no "no-jump" frame

$$
\begin{aligned}
h^{\mu \nu} & :=\frac{1}{3} K^{\mu \nu}+\frac{i}{2 m} \epsilon^{\mu \nu \alpha \beta} k_{\alpha} \mathfrak{s}_{\beta}+K_{\alpha \beta}^{\mu \nu} \mathfrak{s}^{\alpha} \mathfrak{s}^{\beta}, \\
H^{\mu \nu} & :=\frac{1}{3} K^{\mu \nu}+\frac{i}{2 m} \epsilon^{\mu \nu \alpha \beta} k_{\alpha} \mathfrak{s}_{\beta}+\frac{5}{8} K_{\alpha \beta^{\prime} \mathfrak{s}^{\alpha} \mathfrak{s}^{\beta}}
\end{aligned}
$$

Equilibrium

- Local equilibrium distribution function fulfills $\mathfrak{C}\left[f_{\text {eq }}\right]=0$

Equilibrium

- Local equilibrium distribution function fulfills $\mathfrak{C}\left[f_{\text {eq }}\right]=0$
- Has to depend on the collisional invariants
\rightarrow Charge, four-momentum and total angular momentum

Equilibrium

- Local equilibrium distribution function fulfills $\mathfrak{C}\left[f_{\text {eq }}\right]=0$
- Has to depend on the collisional invariants
\rightarrow Charge, four-momentum and total angular momentum

Local-equilibrium distribution function

$$
\begin{equation*}
f_{\mathrm{eq}}(x, k, \mathfrak{s})=\exp \left(-\beta_{0} E_{\mathbf{k}}+\frac{\hbar}{2} \Omega_{\mu \nu} \Sigma_{\mathfrak{s}}^{\mu \nu}\right) \tag{8}
\end{equation*}
$$

$$
\Sigma_{\mathfrak{s}}^{\mu \nu}:=-\frac{1}{m} \epsilon^{\mu \nu \alpha \beta} k_{\alpha} \mathfrak{s} \beta_{\beta}, E_{\mathbf{k}}:=k \cdot u
$$

Equilibrium

- Local equilibrium distribution function fulfills $\mathfrak{C}\left[f_{\text {eq }}\right]=0$
- Has to depend on the collisional invariants
\rightarrow Charge, four-momentum and total angular momentum

Local-equilibrium distribution function

$$
\begin{equation*}
f_{\mathrm{eq}}(x, k, \mathfrak{s})=\exp \left(-\beta_{0} E_{\mathbf{k}}+\frac{\hbar}{2} \Omega_{\mu \nu} \Sigma_{\mathfrak{s}}^{\mu \nu}\right) \tag{8}
\end{equation*}
$$

- Necessary conditions on Lagrange multipliers $\beta_{0} u^{\mu}, \Omega^{\mu \nu}$ for a vanishing collision term: $\partial^{(\mu}\left(\beta_{0} u^{\nu)}\right)=0, \Omega^{\mu \nu}=-\frac{1}{2} \partial^{[\mu}\left(\beta_{0} u^{\nu]}\right)$
- Same conditions as for global equilibrium, where $k \cdot \partial f_{\text {eq }}=0$

$$
\sum_{\mathfrak{s}}^{\mu \nu}:=-\frac{1}{m} \epsilon^{\mu \nu \alpha \beta} k_{\alpha} \mathfrak{s}_{\beta}, E_{\mathbf{k}}:=k \cdot u
$$

Equilibrium

- Local equilibrium distribution function fulfills $\mathfrak{C}\left[f_{\text {eq }}\right]=0$
- Has to depend on the collisional invariants
\rightarrow Charge, four-momentum and total angular momentum

Local-equilibrium distribution function

$$
\begin{equation*}
f_{\mathrm{eq}}(x, k, \mathfrak{s})=\exp \left(-\beta_{0} E_{\mathbf{k}}+\frac{\hbar}{2} \Omega_{\mu \nu} \Sigma_{\mathfrak{s}}^{\mu \nu}\right) \tag{8}
\end{equation*}
$$

- Necessary conditions on Lagrange multipliers $\beta_{0} u^{\mu}, \Omega^{\mu \nu}$ for a vanishing collision term: $\partial^{(\mu}\left(\beta_{0} u^{\nu)}\right)=0, \Omega^{\mu \nu}=-\frac{1}{2} \partial^{[\mu}\left(\beta_{0} u^{\nu]}\right)$
- Same conditions as for global equilibrium, where $k \cdot \partial f_{\text {eq }}=0$
- However, we can relax these constraints if we only demand that the local part of the collision term vanishes!

$$
\sum_{\mathfrak{s}}^{\mu \nu}:=-\frac{1}{m} \epsilon^{\mu \nu \alpha \beta} k_{\alpha} \mathfrak{s}_{\beta}, E_{\mathbf{k}}:=k \cdot u
$$

Moment expansion

- Split distribution function $f=f_{\text {eq }}+\delta f$

Moment expansion

- Split distribution function $f=f_{\text {eq }}+\delta f$
- Perform moment expansion including spin degrees of freedom

Irreducible moments

Moment expansion

- Split distribution function $f=f_{\text {eq }}+\delta f$
- Perform moment expansion including spin degrees of freedom

Irreducible moments

$$
\begin{equation*}
\rho_{r}^{\mu_{1} \cdots \mu_{\ell}}(x):=\int \mathrm{d} \Gamma E_{\mathbf{k}}^{r} k^{\left\langle\mu_{1}\right.} \cdots k^{\left.\mu_{\ell}\right\rangle} \delta f(x, k, \mathfrak{s}) \tag{9a}
\end{equation*}
$$

$k^{\left\langle\mu_{1}\right.} \cdots k^{\left.\mu_{\ell}\right\rangle}:=\Delta_{\nu_{1} \cdots \nu_{\ell}}^{\mu_{1} \cdots \mu_{\ell}} k^{\nu_{1}} \cdots k^{\nu_{\ell}}$

Moment expansion

- Split distribution function $f=f_{\text {eq }}+\delta f$
- Perform moment expansion including spin degrees of freedom

Irreducible moments

$$
\begin{align*}
\rho_{r}^{\mu_{1} \cdots \mu_{\ell}}(x) & :=\int \mathrm{d} \Gamma E_{\mathbf{k}}^{r} k^{\left\langle\mu_{1}\right.} \cdots k^{\left.\mu_{\ell}\right\rangle} \delta f(x, k, \mathfrak{s}) \tag{9a}\\
\tau_{r}^{\mu, \mu_{1} \cdots \mu_{\ell}}(x) & :=\int \mathrm{d} \Gamma \mathfrak{s}^{\mu} E_{\mathbf{k}}^{r} k^{\left\langle\mu_{1}\right.} \cdots k^{\left.\mu_{\ell}\right\rangle} \delta f(x, k, \mathfrak{s}) \tag{9b}
\end{align*}
$$

$k^{\left\langle\mu_{1}\right.} \cdots k^{\left.\mu_{\ell}\right\rangle}:=\Delta_{\nu_{1} \cdots \nu_{\ell}}^{\mu_{1} \cdots \mu_{\ell}} k^{\nu_{1}} \cdots k^{\nu_{\ell}}$

Moment expansion

- Split distribution function $f=f_{\text {eq }}+\delta f$
- Perform moment expansion including spin degrees of freedom

Irreducible moments

$$
\begin{align*}
\rho_{r}^{\mu_{1} \cdots \mu_{\ell}}(x) & :=\int \mathrm{d} \Gamma E_{\mathbf{k}}^{r} k^{\left\langle\mu_{1}\right.} \cdots k^{\left.\mu_{\ell}\right\rangle} \delta f(x, k, \mathfrak{s}) \tag{9a}\\
\tau_{r}^{\mu, \mu_{1} \cdots \mu_{\ell}}(x) & :=\int \mathrm{d} \Gamma \mathfrak{s}^{\mu} E_{\mathrm{k}}^{r} k^{\left\langle\mu_{1}\right.} \cdots k^{\left.\mu_{\ell}\right\rangle} \delta f(x, k, \mathfrak{s}) \tag{9b}\\
\psi_{r}^{\mu \nu, \mu_{1} \cdots \mu_{\ell}}(x) & :=\int \mathrm{d} \Gamma K_{\alpha \beta^{s}}^{\mu \nu} \mathfrak{s}^{\alpha} \mathfrak{s}^{\beta} E_{\mathrm{k}}^{r} k^{\left\langle\mu_{1}\right.} \cdots k^{\left.\mu_{\ell}\right\rangle} \delta f(x, k, \mathfrak{s}) \tag{9c}
\end{align*}
$$

$k^{\left\langle\mu_{1}\right.} \cdots k^{\left.\mu_{\ell}\right\rangle}:=\Delta_{\nu_{1} \cdots \nu_{\ell}}^{\mu_{1} \cdots \mu_{\ell}} k^{\nu_{1}} \cdots k^{\nu_{\ell}}$

Moment expansion

- Split distribution function $f=f_{\text {eq }}+\delta f$
- Perform moment expansion including spin degrees of freedom

Irreducible moments

$$
\begin{align*}
\rho_{r}^{\mu_{1} \cdots \mu_{\ell}}(x) & :=\int \mathrm{d} \Gamma E_{\mathbf{k}}^{r} k^{\left\langle\mu_{1}\right.} \cdots k^{\left.\mu_{\ell}\right\rangle} \delta f(x, k, \mathfrak{s}) \tag{9a}\\
\tau_{r}^{\mu, \mu_{1} \cdots \mu_{\ell}}(x) & :=\int \mathrm{d} \Gamma \mathfrak{s}^{\mu} E_{\mathrm{k}}^{r} k^{\left\langle\mu_{1}\right.} \cdots k^{\left.\mu_{\ell}\right\rangle} \delta f(x, k, \mathfrak{s}) \tag{9b}\\
\psi_{r}^{\mu \nu, \mu_{1} \cdots \mu_{\ell}}(x) & :=\int \mathrm{d} \Gamma K_{\alpha \beta^{s}}^{\mu \nu} \mathfrak{s}^{\alpha} \mathfrak{s}^{\beta} E_{\mathrm{k}}^{r} k^{\left\langle\mu_{1}\right.} \cdots k^{\left.\mu_{\ell}\right\rangle} \delta f(x, k, \mathfrak{s}) \tag{9c}
\end{align*}
$$

- Equations of motion can be derived from Boltzmann equation
- Knowing the evolution of all moments is equivalent to solving the Boltzmann equation

$$
k^{\left\langle\mu_{1}\right.} \cdots k^{\left.\mu_{\ell}\right\rangle}:=\Delta_{\nu_{1} \cdots \nu_{\ell}}^{\mu_{1} \cdots \mu_{\ell}} k^{\nu_{1}} \cdots k^{\nu_{\ell}}
$$

Polarization observables in kinetic theory

Vector Polarization (Pauli-Lubanski Pseudovector)

$$
\begin{equation*}
S^{\mu}(k):=\operatorname{Tr}\left[\hat{S}^{\mu} \hat{\rho}(k)\right]=\frac{1}{N(k)} \int \mathrm{d} \Sigma_{\lambda} k^{\lambda} \int \mathrm{d} S(k) \mathfrak{s}^{\mu} f(x, k, \mathfrak{s}) \tag{10}
\end{equation*}
$$

$$
N(k):=\int \mathrm{d} \Sigma_{\gamma} k^{\gamma} \int \mathrm{d} S(k) f(x, k, \mathfrak{s}), \quad \hat{S}^{\mu}:=-(1 / 2 m) \epsilon^{\mu \nu \alpha \beta} \hat{J}_{\nu \alpha} \hat{P}_{\beta}
$$

Polarization observables in kinetic theory

Vector Polarization (Pauli-Lubanski Pseudovector)

$$
\begin{equation*}
S^{\mu}(k):=\operatorname{Tr}\left[\hat{S}^{\mu} \hat{\rho}(k)\right]=\frac{1}{N(k)} \int \mathrm{d} \Sigma_{\lambda} k^{\lambda} \int \mathrm{d} S(k) \mathfrak{s}^{\mu} f(x, k, \mathfrak{s}) \tag{10}
\end{equation*}
$$

Tensor Polarization

$$
\begin{equation*}
\rho_{00}(k)=\frac{1}{3}-\sqrt{\frac{2}{3}} \epsilon_{\mu}^{(0)}(k) \epsilon_{\nu}^{(0)}(k) \Theta^{\mu \nu}(k) \tag{11a}
\end{equation*}
$$

$$
N(k):=\int \mathrm{d} \Sigma_{\gamma} k^{\gamma} \int \mathrm{d} S(k) f(x, k, \mathfrak{s}), \quad \hat{S}^{\mu}:=-(1 / 2 m) \epsilon^{\mu \nu \alpha \beta} \hat{J}_{\nu \alpha} \hat{P}_{\beta}
$$

Polarization observables in kinetic theory

Vector Polarization (Pauli-Lubanski Pseudovector)

$$
\begin{equation*}
S^{\mu}(k):=\operatorname{Tr}\left[\hat{S}^{\mu} \hat{\rho}(k)\right]=\frac{1}{N(k)} \int \mathrm{d} \Sigma_{\lambda} k^{\lambda} \int \mathrm{d} S(k) \mathfrak{s}^{\mu} f(x, k, \mathfrak{s}) \tag{10}
\end{equation*}
$$

Tensor Polarization

$$
\left.\begin{array}{rl}
\rho_{00}(k) & =\frac{1}{3}-\sqrt{\frac{2}{3}} \epsilon_{\mu}^{(0)}(k) \epsilon_{\nu}^{(0)}(k) \Theta^{\mu \nu}(k) \\
\Theta^{\mu \nu}(k) & \left.:=\frac{1}{2} \sqrt{\frac{3}{2}} \operatorname{Tr}\left[\left(\hat{S}^{(\mu} \hat{S}^{\nu}\right)+\frac{4}{3} K^{\mu \nu}\right) \hat{\rho}(k)\right] \\
& =\frac{1}{2} \sqrt{\frac{3}{2}} \frac{1}{N(k)} \int \mathrm{d} \Sigma_{\lambda} k^{\lambda} \int \mathrm{d} S(k) K_{\alpha \beta^{\prime}}^{\mu \nu} \mathfrak{s}^{\alpha} \beta \tag{11b}
\end{array}\right)(x, k, \mathfrak{s})(t)
$$

$$
N(k):=\int \mathrm{d} \Sigma_{\gamma} k^{\gamma} \int \mathrm{d} S(k) f(x, k, \mathfrak{s}), \quad \hat{S}^{\mu}:=-(1 / 2 m) \epsilon^{\mu \nu \alpha \beta} \hat{J}_{\nu \alpha} \hat{P}_{\beta}
$$

Truncation

- Goal: Express polarization observables through fluid-dynamical quantities

Truncation

- Goal: Express polarization observables through fluid-dynamical quantities
\leftrightarrow Truncate moment expansion
- Goal: Express polarization observables through fluid-dynamical quantities
\leftrightarrow Truncate moment expansion
- Which moments are contained in conserved quantities and polarization observables?

Truncation

- Goal: Express polarization observables through fluid-dynamical quantities
\leftrightarrow Truncate moment expansion
- Which moments are contained in conserved quantities and polarization observables?

Needed moments

$$
\begin{gather*}
\Pi:=-\frac{m^{2}}{3} \rho_{0}, \quad \pi^{\mu \nu}:=\rho_{0}^{\mu \nu} \quad\left(T^{\mu \nu}\right) \tag{12a}\\
\mathfrak{p}^{\mu}:=\tau_{0}^{\langle\mu\rangle}, \quad z^{\mu \nu}:=\tau_{1}^{(\langle\mu\rangle,\langle\nu\rangle)}, \quad \mathfrak{q}^{\lambda \mu \nu}:=\tau_{0}^{\langle\lambda\rangle, \mu \nu} \quad\left(J^{\lambda \mu \nu}\right) \tag{12b}\\
\psi_{1}^{\mu \nu}, \quad \psi_{0}^{\mu \nu, \lambda}\left(\Theta^{\mu \nu}\right) \tag{12c}
\end{gather*}
$$

Results I: Dissipative Spin Hydro

Dissipative Hydro: Evolution equations

$$
\begin{align*}
\tau_{\Pi} \dot{\Pi}+\Pi & =-\zeta \theta+\text { h.o.t. } \tag{13a}\\
\tau_{\pi} \dot{\pi}^{\langle\mu \nu\rangle}+\pi^{\mu \nu} & =2 \eta \sigma^{\mu \nu}+\text { h.o.t. } \tag{13b}\\
\tau_{\mathfrak{p}} \dot{\mathfrak{p}}^{\langle\mu\rangle}+\mathfrak{p}^{\langle\mu\rangle} & =\mathfrak{e}^{(0)}\left(\tilde{\Omega}^{\mu \nu}-\tilde{\varpi}^{\mu \nu}\right) u_{\nu}+\text { h.o.t. } \tag{13c}\\
\tau_{\mathfrak{z}} \dot{\mathfrak{z}}^{\langle\mu\rangle\langle\nu\rangle}+\mathfrak{z}^{\langle\mu\rangle\langle\nu\rangle} & =\text { h.o.t. } \tag{13d}\\
\tau_{\mathfrak{q}} \dot{\mathfrak{q}}^{(\lambda\rangle\langle\mu \nu\rangle}+\mathfrak{q}^{\langle\lambda\rangle\langle\mu \nu\rangle} & =\mathfrak{d}^{(2)} \beta_{0} \sigma_{\alpha}{ }^{\langle\mu} \epsilon^{\nu\rangle \lambda \alpha \beta} u_{\beta}+\text { h.o.t. } \tag{13e}\\
\tau_{\psi_{1}} \dot{\psi}_{1}^{\langle\mu \nu\rangle}+\psi_{1}^{\langle\mu \nu\rangle} & =\xi \beta_{0} \pi^{\mu \nu}+\text { h.o.t. } \tag{13f}\\
\tau_{\psi_{0}} \dot{\psi}_{0}^{\langle\mu \nu\rangle, \lambda}+\psi_{0}^{\langle\mu \nu\rangle, \lambda} & =\text { h.o.t. } \tag{13g}
\end{align*}
$$

$$
\varpi^{\mu \nu}:=-\frac{1}{2} \partial^{[\mu}\left(\beta_{0} u^{\nu]}\right), \tilde{A}^{\mu \nu}:=\epsilon^{\mu \nu \alpha \beta} A_{\alpha \beta}
$$

Results I: Dissipative Spin Hydro

Dissipative Hydro: Evolution equations

$$
\begin{align*}
\tau_{\Pi} \dot{\Pi}+\Pi & =-\zeta \theta+\text { h.o.t. } \tag{13a}\\
\tau_{\pi} \dot{\pi}^{\langle\mu \nu\rangle}+\pi^{\mu \nu} & =2 \eta \sigma^{\mu \nu}+\text { h.o.t. } \tag{13b}\\
\tau_{\mathfrak{p}} \dot{\mathfrak{p}}^{\langle\mu\rangle}+\mathfrak{p}^{\langle\mu\rangle} & =\mathfrak{e}^{(0)}\left(\tilde{\Omega}^{\mu \nu}-\tilde{\varpi}^{\mu \nu}\right) u_{\nu}+\text { h.o.t. } \tag{13c}\\
\tau_{\mathfrak{z}} \dot{\mathfrak{z}}^{\langle\mu\rangle\langle\nu\rangle}+\mathfrak{z}^{\langle\mu\rangle\langle\nu\rangle} & =\text { h.o.t. } \tag{13d}\\
\tau_{\mathfrak{q}} \dot{\mathfrak{q}}^{(\lambda\rangle\langle\mu \nu\rangle}+\mathfrak{q}^{\langle\lambda\rangle\langle\mu \nu\rangle} & =\mathfrak{d}^{(2)} \beta_{0} \sigma_{\alpha}{ }^{\langle\mu} \epsilon^{\nu\rangle \lambda \alpha \beta} u_{\beta}+\text { h.o.t. } \tag{13e}\\
\tau_{\psi_{1}} \dot{\psi}_{1}^{\langle\mu \nu\rangle}+\psi_{1}^{\langle\mu \nu\rangle} & =\xi \beta_{0} \pi^{\mu \nu}+\text { h.o.t. } \tag{13f}\\
\tau_{\psi_{0}} \dot{\psi}_{0}^{\langle\mu \nu\rangle, \lambda}+\psi_{0}^{\langle\mu \nu\rangle, \lambda} & =\text { h.o.t. } \tag{13g}
\end{align*}
$$

- Evaluate polarization and alignment in the Navier-Stokes limit

$$
\varpi^{\mu \nu}:=-\frac{1}{2} \partial^{[\mu}\left(\beta_{0} u^{\nu]}\right), \tilde{A}^{\mu \nu}:=\epsilon^{\mu \nu \alpha \beta} A_{\alpha \beta}
$$

Results II: Alignment

- Moments of spin-rank 2:

$$
\begin{equation*}
\psi_{1}^{\langle\mu \nu\rangle} \simeq \xi \beta_{0} \pi^{\mu \nu}, \quad \psi_{0}^{\langle\mu \nu\rangle, \lambda} \simeq 0 \tag{14}
\end{equation*}
$$

Results II: Alignment

- Moments of spin-rank 2:

$$
\begin{equation*}
\psi_{1}^{\langle\mu \nu\rangle} \simeq \xi \beta_{0} \pi^{\mu \nu}, \quad \psi_{0}^{\langle\mu \nu\rangle, \lambda} \simeq 0 \tag{14}
\end{equation*}
$$

- For an uncharged fluid in the Navier-Stokes limit, tensor polarization is induced by the shear-stress tensor $\pi^{\mu \nu}$

Results II: Alignment

- Moments of spin-rank 2:

$$
\begin{equation*}
\psi_{1}^{\langle\mu \nu\rangle} \simeq \xi \beta_{0} \pi^{\mu \nu}, \quad \psi_{0}^{\langle\mu \nu\rangle, \lambda} \simeq 0 \tag{14}
\end{equation*}
$$

- For an uncharged fluid in the Navier-Stokes limit, tensor polarization is induced by the shear-stress tensor $\pi^{\mu \nu}$
- We can estimate the coefficient ξ for a four-point interaction $\mathcal{L}_{\text {int }}=\left(V^{\dagger} \cdot V\right)^{2} / 2$

Results II: Alignment

- Moments of spin-rank 2:

$$
\begin{equation*}
\psi_{1}^{\langle\mu \nu\rangle} \simeq \xi \beta_{0} \pi^{\mu \nu}, \quad \psi_{0}^{\langle\mu \nu\rangle, \lambda} \simeq 0 \tag{14}
\end{equation*}
$$

- For an uncharged fluid in the Navier-Stokes limit, tensor polarization is induced by the shear-stress tensor $\pi^{\mu \nu}$
- We can estimate the coefficient ξ for a four-point interaction

$$
\mathcal{L}_{\mathrm{int}}=\left(V^{\dagger} \cdot V\right)^{2} / 2
$$

Results II: Alignment

Alignment: Explicit expression

$$
\begin{align*}
\rho_{00}(k)= & \frac{1}{3} \\
- & \frac{4}{15}\left[\int \mathrm{~d} \Sigma_{\lambda} k^{\lambda} f_{0 \mathbf{k}}\left(1-3 \mathcal{H}_{\mathbf{k} 0}^{(0,0)} \Pi / m^{2}+\mathcal{H}_{\mathbf{k} 0}^{(0,2)} \pi^{\mu \nu} k_{\mu} k_{\nu}\right)\right]^{-1} \\
& \times \int \mathrm{d} \Sigma_{\lambda} k^{\lambda} \mathcal{H}_{\mathbf{k} 1}^{(2,0)} \xi \beta_{0} f_{0 \mathbf{k}} \epsilon_{\mu}^{(0)} \epsilon_{\nu}^{(0)} K_{\alpha \beta}^{\mu \nu} \Xi_{\gamma \delta}^{\alpha \beta} \pi^{\gamma \delta} \tag{15}
\end{align*}
$$

$$
\begin{aligned}
& f_{0 \mathbf{k}}:=\exp \left(-\beta_{0} E_{\mathbf{k}}\right) \\
& \Xi_{\alpha \beta}^{\mu \nu}:=\frac{1}{2} \Xi_{\alpha}^{(\mu} \Xi_{\beta}^{\nu)}-\frac{1}{\Xi^{2}} \Xi^{\mu \gamma} \Xi_{\gamma}^{\nu} \Xi_{\alpha \delta} \Xi_{\beta}^{\delta} \\
& \Xi^{\mu \nu}:=\Delta^{\mu \nu}+k^{\langle\mu\rangle} k^{\langle\nu\rangle} / E_{\mathbf{k}}^{2}
\end{aligned}
$$

- Polarization is determined by the Pauli-Lubanski (pseudo)vector

Results III: Polarization

- Polarization is determined by the Pauli-Lubanski (pseudo)vector

Pauli-Lubanski pseudovector (spin 1/2)

$$
\begin{aligned}
S^{\mu}(k)= & \frac{1}{2 \mathcal{N}} \int \mathrm{~d} \Sigma_{\lambda} k^{\lambda} \mathrm{d} S(k) \mathfrak{s}^{\mu} f(x, k, \mathfrak{s}) \\
\simeq & \int \mathrm{d} \Sigma_{\lambda} k^{\lambda} \frac{f_{0}}{2 \mathcal{N}}\left\{-\frac{\hbar}{2 m} \tilde{\Omega}^{\mu \nu} k_{\nu}+\left(\delta_{\nu}^{\mu}-\frac{u^{\mu} k_{\langle\nu\rangle}}{E_{\mathbf{k}}}\right)\right. \\
& \left.\times\left[\mathfrak{e} \chi_{\mathfrak{p}}\left(\tilde{\Omega}^{\nu \rho}-\tilde{\varpi}^{\nu \rho}\right) u_{\rho}-\chi_{\mathfrak{q}} \mathfrak{d} \beta_{0} \sigma_{\rho}{ }^{\langle\alpha} \epsilon^{\beta\rangle \nu \sigma \rho} u_{\sigma} k_{\langle\alpha} k_{\beta\rangle}\right]\right\}(16 \mathrm{~b})
\end{aligned}
$$

$$
\mathcal{N}:=\int \mathrm{d} \Sigma_{\lambda} k^{\lambda} \mathrm{d} S(k) f(x, k, \mathfrak{s})
$$

Results III: Polarization

- Polarization is determined by the Pauli-Lubanski (pseudo)vector

Pauli-Lubanski pseudovector (spin 1/2)

$$
\begin{aligned}
S^{\mu}(k)= & \frac{1}{2 \mathcal{N}} \int \mathrm{~d} \Sigma_{\lambda} k^{\lambda} \mathrm{d} S(k) \mathfrak{s}^{\mu} f(x, k, \mathfrak{s}) \\
\simeq & \int \mathrm{d} \Sigma_{\lambda} k^{\lambda} \frac{f_{0}}{2 \mathcal{N}}\left\{-\frac{\hbar}{2 m} \tilde{\Omega}^{\mu \nu} k_{\nu}+\left(\delta_{\nu}^{\mu}-\frac{u^{\mu} k_{\langle\nu\rangle}}{E_{\mathbf{k}}}\right)\right. \\
& \left.\times\left[\mathfrak{e} \chi_{\mathfrak{p}}\left(\tilde{\Omega}^{\nu \rho}-\tilde{\varpi}^{\nu \rho}\right) u_{\rho}-\chi_{\mathfrak{q}} \mathfrak{d} \beta_{0} \sigma_{\rho}^{\langle\alpha} \epsilon^{\beta\rangle \nu \sigma \rho} u_{\sigma} k_{\langle\alpha} k_{\beta\rangle}\right]\right\}(16 \mathrm{~b})
\end{aligned}
$$

- Contains novel contributions from fluid shear

■ Only sourced by nonlocal collisions

$$
\mathcal{N}:=\int \mathrm{d} \Sigma_{\lambda} k^{\lambda} \mathrm{d} S(k) f(x, k, \mathfrak{s})
$$

Summary

- Developed quantum kinetic theory and dissipative spin hydrodynamics
- Developed quantum kinetic theory and dissipative spin hydrodynamics
- Kinetic formulation can be derived rigorously from QFT via the Wigner-function formalism
- Quantum effects result in nonlocal collisions
- Developed quantum kinetic theory and dissipative spin hydrodynamics
- Kinetic formulation can be derived rigorously from QFT via the Wigner-function formalism
- Quantum effects result in nonlocal collisions
- Employed method of moments to extract hydrodynamic limit
\rightarrow Introduce multiple sets of moments dependent on spin
\rightarrow Follow standard procedure to obtain equations of motion
\rightarrow Truncate such that the evolution of $S^{\lambda \mu \nu}$ can be described
- Developed quantum kinetic theory and dissipative spin hydrodynamics
- Kinetic formulation can be derived rigorously from QFT via the Wigner-function formalism
- Quantum effects result in nonlocal collisions
- Employed method of moments to extract hydrodynamic limit \rightarrow Introduce multiple sets of moments dependent on spin \rightarrow Follow standard procedure to obtain equations of motion \rightarrow Truncate such that the evolution of $S^{\lambda \mu \nu}$ can be described
- Connected polarization and alignment to fluid quantities in the Navier-Stokes limit

Future perspectives

- Evaluate expressions for polarization and alignment with hydrodynamic simulations
- Implement full spin hydrodynamics numerically
- Include electric and magnetic fields

Appendix

Relevant time scales: An estimation

- Simplest interaction: constant cross section
- Spin-related relaxation times shorter than standard dissipative time scales, but not much

Moment equations: Spin-rank 0

- Moments follow relaxation-type equations

Moment equation for $\ell=0$

$$
\begin{align*}
\dot{\rho}_{r}-\mathfrak{C}_{r-1}= & {\left[(1-r) I_{r 1}-I_{r 0}\right] \theta-I_{r 0} \dot{\alpha}_{0}+I_{r+1,0} \dot{0}_{0} } \\
& +(r-1) \rho_{r-2}^{\mu \nu} \sigma_{\mu \nu}+r \rho_{r-1}^{\mu} \dot{u}_{\mu}-\nabla_{\mu} \rho_{r-1}^{\mu} \\
& -\frac{1}{3}\left[(r+2) \rho_{r}-(r-1) m^{2} \rho_{r-2}\right] \theta \tag{17}
\end{align*}
$$

- Depend both on equilibrium and dissipative quantities
- Not a closed system
- Blue terms will become Navier-Stokes values

$$
\begin{aligned}
& \dot{A}:=u \cdot \partial A, \nabla^{\mu}:=\Delta^{\mu \nu} \partial_{\nu} \\
& \theta:=\nabla \cdot u, \sigma^{\mu \nu}:=\nabla^{\langle\mu} u^{\nu\rangle}, E_{k}:=k \cdot u \\
& I_{n q}:=[(2 q+1)!!]^{-1} \int \mathrm{~d} \Gamma E_{k}^{n-2 q}\left(-k^{\langle\alpha\rangle} k_{\alpha}\right)^{q} \\
& \quad \text { David Wagner } \\
& \text { Nonlocal spin transport }
\end{aligned}
$$

Moment equations: Spin-rank 1

- Same procedure as for the moments of spin-rank 0

Moment equation for $\ell=0$

$$
\begin{align*}
\dot{\tau}_{r}^{\langle\mu\rangle}-\mathfrak{C}_{r-1}^{\langle\mu\rangle}= & \frac{\hbar}{2 m}\left\{\left[I_{r+1,0}+r I_{r+1,1}\right] \theta+I_{r+1,0} \dot{\alpha}_{0}-I_{r+2,0} \dot{\beta}_{0}\right\} \omega_{0}^{\mu} \\
& -\frac{\hbar}{4 m} I_{r+1,1} \Delta_{\lambda}^{\mu} \nabla_{\nu} \tilde{\Omega}^{\lambda \nu}-\frac{\hbar}{4 m} I_{r+1,0} \epsilon^{\mu \nu \alpha \beta} u_{\nu} \dot{\Omega}_{\alpha \beta} \\
& -\frac{\hbar}{4 m} \tilde{\Omega}^{\langle\mu\rangle \nu}\left[I_{r+1,1} \nabla_{\nu} \alpha_{0}-I_{r+2,1}\left(\nabla_{\nu} \beta_{0}+\beta_{0} \dot{u}_{\nu}\right)\right] \\
& +r \dot{u}_{\nu} \tau_{r-1}^{\langle\mu\rangle, \nu}+(r-1) \sigma_{\alpha \beta} \tau_{r-2}^{\langle\mu\rangle, \alpha \beta}-\Delta_{\lambda}^{\mu} \nabla_{\nu} \tau_{r-1}^{\lambda, \nu} \\
& -\frac{1}{3}\left[(r+2) \tau_{r}^{\langle\mu\rangle}-(r-1) m^{2} \tau_{r-2}^{\langle\mu\rangle}\right] \theta \tag{18}
\end{align*}
$$

- Determine the (vector) polarization of particles

$$
\tilde{\Omega}^{\mu \nu}:=\epsilon^{\mu \nu \alpha \beta} \Omega_{\alpha \beta}, \Omega^{\mu \nu}=u^{[\mu} \kappa_{0}^{\nu]}+\epsilon^{\mu \nu \alpha \beta} u_{\alpha} \omega_{0, \beta}
$$

Moment equations: Spin-rank 2

Moment equation for $\ell=0$

$$
\begin{align*}
\dot{\psi}_{r}^{\langle\mu \nu\rangle}-\mathfrak{C}_{r-1}^{\langle\mu \nu\rangle}= & -\frac{\theta}{3}\left[(r+2) \psi_{r}^{\langle\mu \nu\rangle}-(r-1) m^{2} \psi_{r-2}^{\langle\mu \nu\rangle}\right]+r \psi_{r-1}^{\langle\mu \nu\rangle, \alpha} \dot{u}_{\alpha} \\
& -\Delta_{\alpha \beta}^{\mu \nu} \nabla_{\gamma} \psi_{r-1}^{\alpha \beta, \gamma}+(r-1) \psi_{r-2}^{\langle\mu \nu\rangle, \alpha \beta} \sigma_{\alpha \beta} \tag{19}
\end{align*}
$$

- No dependence on equilibrium quantities appears because moments of spin-rank 2 do not appear in any conserved current
- Nonetheless, they determine the tensor polarization of spin-1 particles

$$
\Delta_{\alpha \beta}^{\mu \nu}:=\left(\Delta_{\alpha}^{(\mu} \Delta_{\beta}^{\nu)}\right) / 2-(1 / 3) \Delta^{\mu \nu} \Delta_{\alpha \beta}
$$

Truncation

- Spin-1: Which moments are contained in the total tensor polarization?

Truncation

- Spin-1: Which moments are contained in the total tensor polarization?

Total tensor polarization

$$
\begin{equation*}
\bar{\Theta}^{\mu \nu}:=\int \mathrm{d} K N(k) \Theta^{\mu \nu}(k)=\frac{1}{2} \sqrt{\frac{3}{2}} \int \mathrm{~d} \Sigma_{\lambda}\left(u^{\lambda} \psi_{1}^{\mu \nu}+\psi_{0}^{\mu \nu, \lambda}\right) \tag{20}
\end{equation*}
$$

[^0]
Truncation

- Spin-1: Which moments are contained in the total tensor polarization?

Total tensor polarization

$$
\begin{equation*}
\bar{\Theta}^{\mu \nu}:=\int \mathrm{d} K N(k) \Theta^{\mu \nu}(k)=\frac{1}{2} \sqrt{\frac{3}{2}} \int \mathrm{~d} \Sigma_{\lambda}\left(u^{\lambda} \psi_{1}^{\mu \nu}+\psi_{0}^{\mu \nu, \lambda}\right) \tag{20}
\end{equation*}
$$

- Lowest-order approximation: Keep only these moments in the employed basis, i.e.,

$$
\begin{equation*}
\delta f(x, k) \hat{=} \delta f\left(\Pi, \pi^{\mu \nu}, \mathfrak{p}^{\mu}, \mathfrak{z}^{\mu \nu}, \mathfrak{q}^{\lambda \mu \nu}, \psi_{1}^{\mu \nu}, \psi_{0}^{\mu \nu, \lambda}, k\right) \tag{21}
\end{equation*}
$$

$$
\mathrm{d} K:=\mathrm{d}^{3} \mathbf{k} /\left[(2 \pi \hbar)^{3} 2 k^{0}\right]
$$

[^0]: $\mathrm{d} K:=\mathrm{d}^{3} \mathbf{k} /\left[(2 \pi \hbar)^{3} 2 k^{0}\right]$

