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Global Λ-polarization
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▶ Global polarization: polarization
of Λ-hyperons along
angular-momentum direction

Can be well explained by
considering local equilibrium
on freeze-out hypersurface

Sµ
ϖ = −ϵµναβkν

∫
dΣλk

λf0(1−f0)ϖαβ

8m
∫
dΣλkλf0

L. Adamczyk et al. (STAR), Nature 548 (2017) 62
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ϖµν := − 1
2
(∂µβν − ∂νβµ), β

µ := uµ/T , f0 = [exp(uµkµ/T ) + 1]−1
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Local Λ-polarization
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▶ Local polarization:
Angle-dependent polarization of
Λ-hyperons along
beam-direction

Could only be explained
recently by incorporating
shear effects (neglecting
temperature gradients)

Sµ
ξ = −ϵµναβkν

∫
dΣλk

λf0(1−f0)t̂α
kγ

k0 Ξγβ

4mT
∫
dΣλkλf0
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ωµν := 1
2
(∂µuν − ∂νuµ), Ξµν := 1

2
(∂µuν + ∂νuµ), ∆

µν := gµν − uµuν
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Alignment of ϕ-mesons
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▶ Spin-1 particles feature tensor
polarization (=̂ alignment)

Larger than expected
Some theoretical
developments, but no
definitive answer yet
X.-L. Xia, H. Li, X-G. Huang, H.-Z. Huang,
PLB 817 (2021) 136325
X.-L. Sheng, L. Oliva, Z.-T. Liang, Q. Wang,
X.-N. Wang, arXiv:2206.05868 (2022)
F. Li, S. Y. F. Liu, arXiv:2206.11890 (2022)
DW, NW, ES, 2207.01111 (2022)

Can spin-1 hydrodynamics
help explain this?
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Spin Hydrodynamics: Basics
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▶ Hydrodynamics is based on conservation laws
Consider a system of uncharged fields
→ Should conserve energy-momentum and total angular momentum

Conservation laws

∂µT
µν = 0 (1a)

∂λJ
λµν =: ∂λS

λµν + T [µν] = 0 (1b)

▶ 10 equations for 16+24 quantities
▶ Additional information about dissipative quantities has to be provided

→ Use kinetic theory as effective microscopic model

▶ Rest of the presentation:
Construct such a kinetic theory
Perform hydrodynamic limit
Obtain expressions for observables
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How to: Quantum kinetic theory
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▶ Spin is a quantum property

→ Start from quantum field theory
→ Use Wigner-function formalism

Wigner function (Spin 1)

Wµν(x, k) := − 2

(2πℏ)4ℏ

∫
d4ve−ik·y/ℏ

〈
: V †µ(x+ y/2)V ν(x− y/2) :

〉
▶ Determines a quantum phase-space distribution function
▶ Equations of motion follow from field equations

Determined by Lagrangian L0 + Lint

▶ Independent components: scalar fK , axial vector Gµ and traceless
symmetric tensor FµνK
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▶ Determines a quantum phase-space distribution function
▶ Equations of motion follow from field equations

Determined by Lagrangian L0 + Lint

▶ Independent components: scalar fK , axial vector Gµ and traceless
symmetric tensor FµνK

fK := (1/3)KµνW
µν , Gµ := −(i/2m)ϵµναβkνWαβ , F

µν
K := Kµν

αβW
αβ

Kµν := gµν − kµkν/m2 , Kµν
αβ := (Kµ

αK
ν
β +Kµ

βK
ν
α)/2− 1/3KµνKαβ
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Extending phase space
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Boltzmann equations

▶ Not one, but nine equations in (x, k)-phase space

k · ∂fK(x, k) = CK , k · ∂Gµ(x, k) = CµG , k · ∂FµνK (x, k) = CµνK

▶ Way to compactify this: Enlarge phase space from (x, k) to (x, k, s)

▶ Measure dS := 3m
2σπd

4sδ[s2 + σ2]δ(k · s)

Boltzmann equation in extended phase space

f(x, k, s) := fK − sµG
µ +

5

4
sµsνF

µν
K (2)

▶ Only on-shell parts f(x, k, s) = δ(k2 −m2)f(x, k, s) contribute

k · ∂f(x, k, s) = C[f ] (3)

David Wagner Nonlocal spin transport 17.07.2023 6
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Collision term
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DW, NW, DHR, Phys.Rev.D 106 (2022) 11, 116021

Collision kernel

C[f ] =
1

2

∫
dΓ1dΓ2dΓ

′dS̄(k)δ(4)(k1 + k2 − k − k′)W

×
[
f(x+∆1 −∆, k1, s1)f(x+∆2 −∆, k2, s2)

−f(x, k, s̄)f(x+∆′ −∆, k′, s′)
]

(4)

▶ Contributions inside the collision term have gradient corrections

f(x, k, s) + ∆µ∂µf(x, k, s) ≈ f(x+∆, k, s) (5)

▶ A (momentum- and spin-dependent) spacetime shift ∆µ enters

→ Particles do not scatter at the same spacetime point!

▶ This enables a conversion of orbital and spin angular momenta

dΓ := 2d4kδ(k2 −m2)dS(k)
David Wagner Nonlocal spin transport 17.07.2023 7
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Nonlocal collisions
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DW, NW, ES, 2306.05936 (2023)

Spacetime shifts

∆µ :=
1

3

1

W
(2πℏ)3

32

iℏ
m2

Mγ1γ2δ1δ2M ζ1ζ2η1η2h1,γ1η1h2,γ2η2h
′
ζ2δ2

×
(
Hµ

δ1kζ1 − kδ1Hζ1
µ
)

(6)

▶ Depend on the transfer-matrix elements

⟨11′| t̂ |22′⟩ = ϵ∗1,αϵ
∗
1′,βϵ2,γϵ2′,δM

αβγδ (7)

▶ Manifestly covariant

→ no “no-jump” frame

hµν := 1
3
Kµν + i

2m
ϵµναβkαsβ +Kµν

αβs
αsβ ,

Hµν := 1
3
Kµν + i

2m
ϵµναβkαsβ + 5

8
Kµν

αβs
αsβ
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Equilibrium
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▶ Local equilibrium distribution function fulfills C[feq] = 0

▶ Has to depend on the collisional invariants
→ Charge, four-momentum and total angular momentum

Local-equilibrium distribution function

feq(x, k, s) = exp

(
−β0Ek +

ℏ
2
ΩµνΣ

µν
s

)
(8)

▶ Necessary conditions on Lagrange multipliers β0u
µ, Ωµν for a

vanishing collision term: ∂(µ(β0u
ν)) = 0 , Ωµν = −1

2∂
[µ(β0u

ν])

▶ Same conditions as for global equilibrium, where k · ∂feq = 0

▶ However, we can relax these constraints if we only demand that the
local part of the collision term vanishes!

Σµν
s := − 1

m
ϵµναβkαsβ , Ek := k · u

David Wagner Nonlocal spin transport 17.07.2023 9
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Moment expansion
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▶ Split distribution function f = feq + δf

▶ Perform moment expansion including spin degrees of freedom

Irreducible moments

▶ Equations of motion can be derived from Boltzmann equation

▶ Knowing the evolution of all moments is equivalent to solving the
Boltzmann equation
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Polarization observables in kinetic theory
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Vector Polarization (Pauli-Lubanski Pseudovector)

Sµ(k) := Tr
[
Ŝµ ρ̂(k)

]
=

1

N(k)

∫
dΣλk

λ

∫
dS(k)sµf(x, k, s) (10)

Tensor Polarization

ρ00(k) =
1

3
−
√

2

3
ϵ(0)µ (k)ϵ(0)ν (k)Θµν(k) (11a)

N(k) :=
∫
dΣγk

γ
∫
dS(k)f(x, k, s), Ŝµ := −(1/2m)ϵµναβ ĴναP̂β
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2

√
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4

3
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2

√
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∫
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Truncation
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▶ Goal: Express polarization observables through fluid-dynamical
quantities

↔ Truncate moment expansion

▶ Which moments are contained in conserved quantities and
polarization observables?

Needed moments

Π := −m
2

3
ρ0 , πµν := ρµν0 (Tµν) (12a)

pµ := τ
⟨µ⟩
0 , zµν := τ

(⟨µ⟩,⟨ν⟩)
1 , qλµν := τ

⟨λ⟩,µν
0 (Jλµν) (12b)

ψµν1 , ψµν,λ0 (Θµν) (12c)
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Results I: Dissipative Spin Hydro
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Dissipative Hydro: Evolution equations

τΠΠ̇ + Π = −ζθ + h.o.t. (13a)

τππ̇
⟨µν⟩ + πµν = 2ησµν + h.o.t. (13b)

τpṗ
⟨µ⟩ + p⟨µ⟩ = e(0)(Ω̃µν − ϖ̃µν)uν + h.o.t. (13c)

τzż
⟨µ⟩⟨ν⟩ + z⟨µ⟩⟨ν⟩ = h.o.t. (13d)

τqq̇
⟨λ⟩⟨µν⟩ + q⟨λ⟩⟨µν⟩ = d(2)β0σ

⟨µ
α ϵν⟩λαβuβ + h.o.t. (13e)

τψ1ψ̇
⟨µν⟩
1 + ψ

⟨µν⟩
1 = ξβ0π

µν + h.o.t. (13f)

τψ0ψ̇
⟨µν⟩,λ
0 + ψ

⟨µν⟩,λ
0 = h.o.t. (13g)

▶ Evaluate polarization and alignment in the Navier-Stokes limit

ϖµν := − 1
2
∂[µ(β0u

ν]), Ãµν := ϵµναβAαβ
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Results II: Alignment
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▶ Moments of spin-rank 2:

ψ
⟨µν⟩
1 ≃ ξβ0π

µν , ψ
⟨µν⟩,λ
0 ≃ 0 (14)

▶ For an uncharged fluid in the Navier-Stokes limit, tensor polarization
is induced by the shear-stress tensor πµν

▶ We can estimate the coefficient ξ for a four-point interaction
Lint = (V † · V )2/2
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Results II: Alignment
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Alignment: Explicit expression

ρ00(k) =
1

3

− 4

15

[∫
dΣλk

λf0k

(
1− 3H(0,0)

k0 Π/m2 +H(0,2)
k0 πµνkµkν

)]−1

×
∫

dΣλk
λH(2,0)

k1 ξβ0f0kϵ
(0)
µ ϵ(0)ν Kµν

αβΞ
αβ
γδ π

γδ (15)

f0k := exp(−β0Ek)

Ξµν
αβ := 1

2
Ξ

(µ
α Ξ

ν)
β − 1

Ξ2Ξ
µγΞν

γΞαδΞ
δ
β

Ξµν := ∆µν + k⟨µ⟩k⟨ν⟩/E2
k
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Results III: Polarization
 

 

CRC -  TR 

▶ Polarization is determined by the Pauli-Lubanski (pseudo)vector

Pauli-Lubanski pseudovector (spin 1/2)

Sµ(k) =
1

2N

∫
dΣλk

λdS(k)sµf(x, k, s) (16a)

≃
∫

dΣλk
λ f0
2N

{
− ℏ

2m
Ω̃µνkν +

(
δµν −

uµk⟨ν⟩

Ek

)

×
[
eχp

(
Ω̃νρ − ϖ̃νρ

)
uρ − χqdβ0σ

⟨α
ρ ϵβ⟩νσρuσk⟨αkβ⟩

]}
(16b)

▶ Contains novel contributions from fluid shear

Only sourced by nonlocal collisions
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Summary
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▶ Developed quantum kinetic theory and dissipative spin hydrodynamics

Kinetic formulation can be derived rigorously from QFT via the
Wigner-function formalism
Quantum effects result in nonlocal collisions
Employed method of moments to extract hydrodynamic limit

→ Introduce multiple sets of moments dependent on spin
→ Follow standard procedure to obtain equations of motion
→ Truncate such that the evolution of Sλµν can be described

▶ Connected polarization and alignment to fluid quantities in the
Navier-Stokes limit
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Future perspectives
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▶ Evaluate expressions for polarization and alignment with
hydrodynamic simulations

▶ Implement full spin hydrodynamics numerically

▶ Include electric and magnetic fields
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Appendix



Relevant time scales: An estimation
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0 2 4 6 8 10
0

1

2

3

4

mβ0

τΠ/λmfp

τn/λmfp

τπ/λmfp

τp/λmfp

τq/λmfp

τz/λmfp

▶ Simplest interaction: constant cross section

▶ Spin-related relaxation times shorter than standard dissipative time
scales, but not much
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Moment equations: Spin-rank 0
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▶ Moments follow relaxation-type equations

Moment equation for ℓ = 0

ρ̇r − Cr−1 = [(1− r)Ir1 − Ir0]θ − Ir0α̇0 + Ir+1,0β̇0

+(r − 1)ρµνr−2σµν + rρµr−1u̇µ −∇µρ
µ
r−1

−1

3

[
(r + 2)ρr − (r − 1)m2ρr−2

]
θ (17)

▶ Depend both on equilibrium and dissipative quantities

▶ Not a closed system

▶ Blue terms will become Navier-Stokes values

Ȧ := u · ∂A, ∇µ := ∆µν∂ν

θ := ∇ · u, σµν := ∇⟨µuν⟩, Ek := k · u
Inq := [(2q + 1)!!]−1

∫
dΓEn−2q

k (−k⟨α⟩kα)
q
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Moment equations: Spin-rank 1
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▶ Same procedure as for the moments of spin-rank 0

Moment equation for ℓ = 0

τ̇ ⟨µ⟩r − C
⟨µ⟩
r−1 =

ℏ
2m

{
[Ir+1,0 + rIr+1,1]θ + Ir+1,0α̇0 − Ir+2,0β̇0

}
ωµ0

− ℏ
4m

Ir+1,1∆
µ
λ∇νΩ̃

λν − ℏ
4m

Ir+1,0ϵ
µναβuνΩ̇αβ

− ℏ
4m

Ω̃⟨µ⟩ν [Ir+1,1∇να0 − Ir+2,1 (∇νβ0 + β0u̇ν)
]

+r u̇ντ
⟨µ⟩,ν
r−1 + (r − 1)σαβτ

⟨µ⟩,αβ
r−2 −∆µ

λ∇ντ
λ,ν
r−1

−1

3

[
(r + 2)τ ⟨µ⟩r − (r − 1)m2τ

⟨µ⟩
r−2

]
θ (18)

▶ Determine the (vector) polarization of particles

Ω̃µν := ϵµναβΩαβ , Ω
µν = u[µκ

ν]
0 + ϵµναβuαω0,β
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Moment equations: Spin-rank 2
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Moment equation for ℓ = 0

ψ̇⟨µν⟩
r − C

⟨µν⟩
r−1 = −θ

3

[
(r + 2)ψ⟨µν⟩

r − (r − 1)m2ψ
⟨µν⟩
r−2

]
+ rψ

⟨µν⟩,α
r−1 u̇α

−∆µν
αβ∇γψ

αβ,γ
r−1 + (r − 1)ψ

⟨µν⟩,αβ
r−2 σαβ (19)

▶ No dependence on equilibrium quantities appears because moments of
spin-rank 2 do not appear in any conserved current

▶ Nonetheless, they determine the tensor polarization of spin-1
particles

∆µν
αβ := (∆

(µ
α ∆

ν)
β )/2− (1/3)∆µν∆αβ
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Truncation
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▶ Spin-1: Which moments are contained in the total tensor
polarization?

Total tensor polarization

Θ̄µν :=

∫
dKN(k)Θµν(k) =

1

2

√
3

2

∫
dΣλ

(
uλψµν1 + ψµν,λ0

)
(20)

▶ Lowest-order approximation: Keep only these moments in the
employed basis, i.e.,

δf(x, k) =̂ δf
(
Π , πµν , pµ , zµν , qλµν , ψµν1 , ψµν,λ0 , k

)
(21)
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dK := d3k/[(2πℏ)32k0]
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polarization?

Total tensor polarization

Θ̄µν :=

∫
dKN(k)Θµν(k) =

1

2

√
3

2

∫
dΣλ

(
uλψµν1 + ψµν,λ0

)
(20)

▶ Lowest-order approximation: Keep only these moments in the
employed basis, i.e.,

δf(x, k) =̂ δf
(
Π , πµν , pµ , zµν , qλµν , ψµν1 , ψµν,λ0 , k

)
(21)

dK := d3k/[(2πℏ)32k0]
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