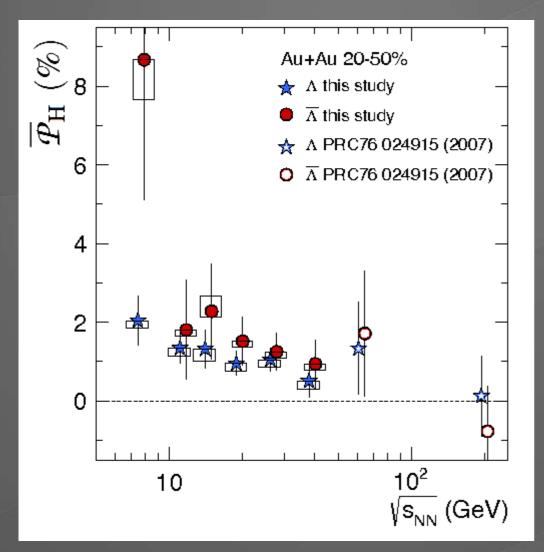
Photon radiation by rotating fermions in magnetic field

Chirality 2023 Beijing, UCAS

Matteo Buzzegoli


July 17th 2023

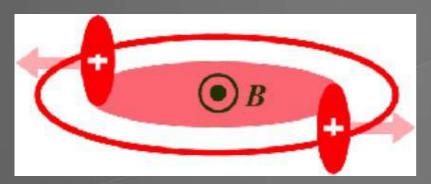
IOWA STATE UNIVERSITY

and J.D. Kroth, K. Tuchin and N. Vijayakumar

2209.02597, 2209.03991, 2306.03863

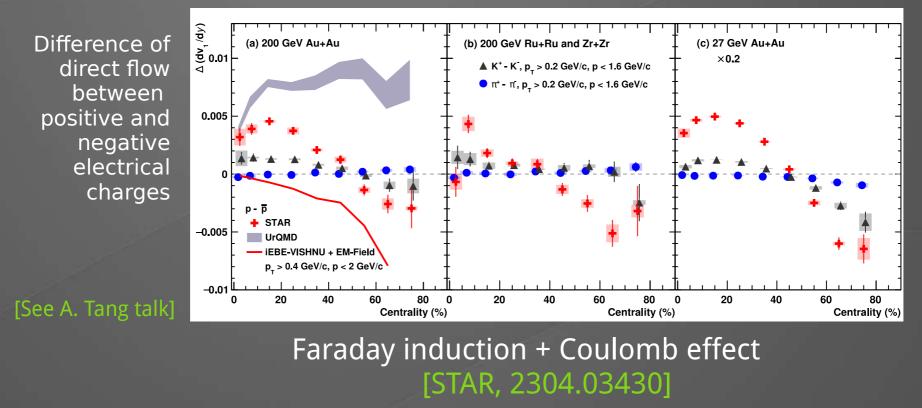
Spin polarization by Rotation

STAR Collaboration, Nature 548 6265, (2017)


F. Becattini, V. Chandra, L. Del Zanna, E. Grossi, Ann. Phys. 338:32 (2013)

$$S^{\mu}(p) = \frac{1}{8m} \epsilon^{\mu\rho\sigma\tau} p_{\tau} \frac{\int_{\Sigma} d\Sigma \cdot p \, n_F (1 - n_F) \varpi_{\sigma\rho}}{\int_{\Sigma} d\Sigma \cdot p \, n_F}$$
$$\beta^{\mu} = \frac{1}{T} u^{\mu} \qquad n_F = \left(e^{\beta \cdot p - \zeta} + 1\right)^{-1}$$
$$\varpi^{\mu\nu} = -\frac{1}{2} (\partial^{\mu} \beta^{\nu} - \partial^{\nu} \beta^{\mu})$$

Consider only rotation for simplicity $\ \Omega^{\mu}$


$$S_{\Omega}^{\mu} = \frac{1}{4m} (1 - n_F) \beta E \left(\Omega^{\mu} - u^{\mu} \frac{\Omega \cdot p}{E} \right)$$
$$E = u \cdot p$$

Magnetic field

$$eB \sim \gamma \alpha_{\rm em} \frac{Z}{b^2} \simeq \frac{1}{{\rm fm}^2} \simeq 10^{18} {\rm Gauss}$$

[V. Skokov, A. Y. Illarionov and V. Toneev, Internat. J. Modern Phys. A 24 (2009) 5925]

Analogy between Rotation Ω and Magnetic field B

Magnetization

Barnett Effect (1915)

$$\frac{qB^{\mu}_{\rm Eff}}{E} = \Omega^{\mu}$$

Spin polarization

$$S_{\Omega}^{\mu} = \frac{1}{4m} (1 - n_F) \beta E \left(\Omega^{\mu} - u^{\mu} \frac{\Omega \cdot p}{E} \right) \qquad \qquad S_B^{\mu} = \frac{1}{4m} (1 - n_F) \beta \left(q B^{\mu} - u^{\mu} \frac{q B \cdot p}{E} \right)$$

[F. Becattini, I. Karpenko, M. Lisa, I. Upsal, S. Voloshin, PRC 95 (2017)]

[MB, Nucl. Phys. A 1036, 122674 (2023)]

Electromagnetic radiation

Classical total radiation intensity from circular motion [Schott (1912)]

$$W = \frac{q^2 \Omega^2}{c} \sum_{\nu=1}^{\infty} \int_0^{\pi} \sin\theta d\theta \left[\cot^2\theta J_{\nu}(\nu\beta\sin\theta) + \beta^2 {J'_{\nu}}^2(\nu\beta\sin\theta) \right]$$

In magnetic field: Classical synchrotron radiation

$$\Omega \to \omega_B = \frac{qB}{E}$$

Gravitational anomaly?

The Axial Vortical Effect (AVE) conductivity

 $\begin{array}{l} \text{Massless AVE} \quad \langle j_A^z \rangle \propto \mathcal{N}T^2\Omega \\ \nabla_\mu j_A^\mu = \mathcal{N}\epsilon^{\mu\nu\alpha\beta}R_{\mu\nu\lambda\rho}R_{\alpha\beta}^{\quad \ \lambda\rho} \end{array}$

K. Landsteiner, E. Megias, F. Pena-Benitez, PRL 107 (2011) K. Jensen, R. Loganayagam, A. Yarom, JHEP 02 (2013) M. Stone, J. Kim, PRD 98 (2) (2018) G.Y. Prokhorov, O.V. Teryaev, V.I. Zakharov, PRL 129 (2022)

Barnett effect: Classical model for spin polarization

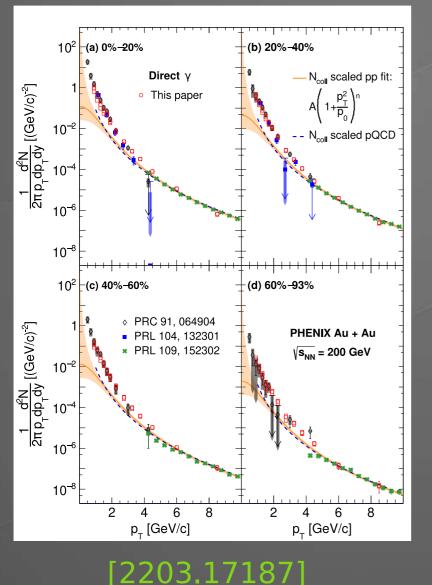
Angular momentum-rotation coupling Classical inertial effect

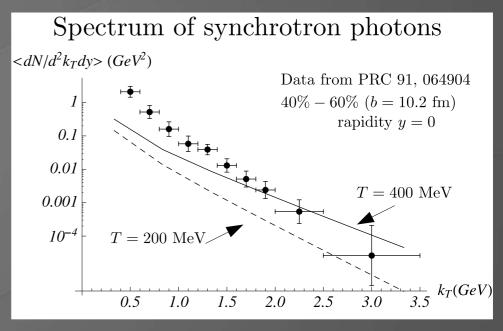
 $H
ightarrow H - oldsymbol{J} \cdot oldsymbol{\Omega}$

[MB, Nucl. Phys. A 1036, 122674 (2023)]

$$\langle m{S}\cdot\hat{m{\Omega}}
angle = \langle m{\mu}\cdot\hat{m{\Omega}}
angle \simeq rac{1}{3}rac{\mu}{\gamma}rac{\Omega}{T} \qquad \gamma \quad ext{gyromagnetic ratio} \ \mu \quad ext{magnetic moment}$$

Furthermore:


Unlike the CVE/CME the (massive) AVE is allowed at the actual equilibrium (no chiral imbalance) No connection between the massive AVE and the gravitational anomaly


$$\langle j_A^z \rangle \simeq \frac{\Omega}{T} \left(1 + 2\frac{T}{m} \right) \frac{(mT)^{3/2}}{\sqrt{2} \pi^{3/2}} e^{|\beta|(\mu-m)} \quad T \ll m$$

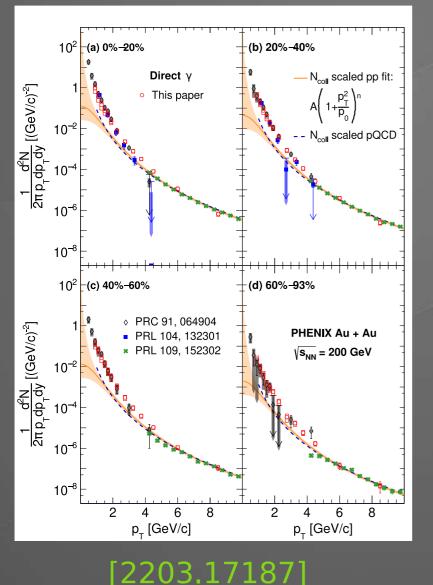
[MB, Lect. Notes Phys. 987 (2021)]

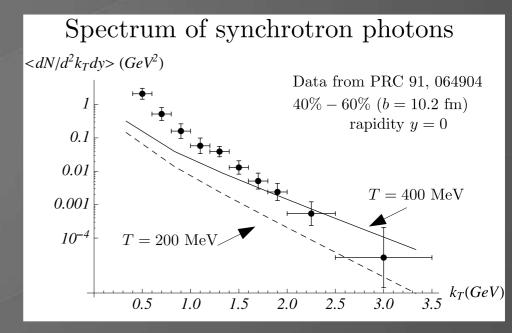
Effect of the magnetic field? Direct photons puzzle

Direct Photons @ PHENIX

[K. Tuchin, PRC 87 (2013), PRC 92 (2015)]

Similar approach [X. Wang, I. A. Shovkovy, PRD 104 (2021) and PRD 106 (2022)]


Synchrotron radiation is not sufficient.

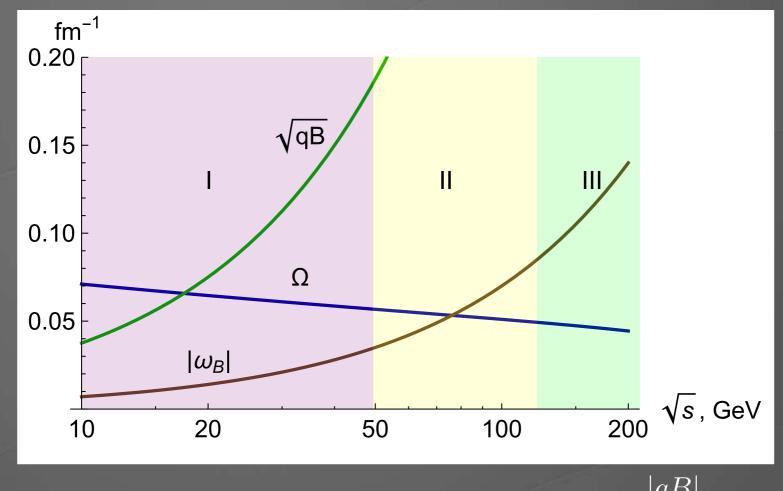

5

v₂ of photons in magnetic field [X. Wang, I. A. Shovkovy, L. Yu, M. Huang, PRD 102 (2020)]

Effect of the magnetic field? Direct photons puzzle

Direct Photons @ PHENIX

[K. Tuchin, PRC 87 (2013), PRC 92 (2015)]


Similar approach [X. Wang, I. A. Shovkovy, PRD 104 (2021) and PRD 106 (2022)]

Synchrotron radiation is not sufficient.

Rotating particles also radiate! How much can rotation help?

v₂ of photons in magnetic field [X. Wang, I. A. Shovkovy, L. Yu, M. Huang, PRD 102 (2020)]

Synchrotron Radiation (SR) in a rotating medium

Synchrotron frequency: $\omega_B = \frac{|qB|}{E}$ Angular velocity (vorticity): Ω

Developing intuition (non-relativistic)

Lorentz Force: $m{F}_L = q(m{v} imes m{B})$ Centrifugal Force: $m{F}_\Omega = -m{p} imes m{\Omega}$ $q < 0, \quad B > 0$

Relative angular velocity as seen by an external stationary observer:

→ Larger radiation Intensity

 $\Omega > 0 \uparrow \qquad qB < 0$

 \rightarrow Smaller radiation Intensity

 $\Omega < 0$ qB < 0

Synchrotron Radiation (SR) in a rotating medium

OUR SET-UP:

The medium provides a global rotation Ω . No other effect of the medium is considered yet. Constant homogeneous magnetic field and rotation. Cylindrical symmetry.

• Our system is kept together like a rotating fluid in a cup.

An element of fluid rotates on a trajectory confined by the cup walls.

• Consider a (non-relativistic) particle in a rotating frame:

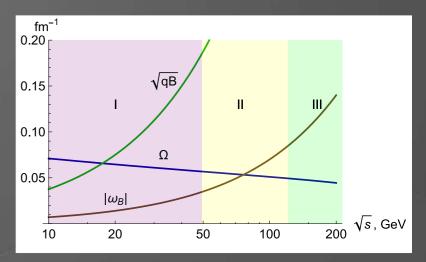
$$m rac{\mathrm{dv}}{\mathrm{dt}} = 2m \mathbf{\Omega} imes \mathbf{v} + q \mathbf{v} imes \mathbf{B} - \left[\left(rac{1}{2} q \mathbf{B} - m \mathbf{\Omega}
ight) imes \mathbf{r}
ight] imes \mathbf{\Omega}$$

The centrifugal force pushes this particle to infinity $r o \infty$. This is **not** the system we study!

"Slow" rotation

• Effects of rotation can be conveniently studied in the rotating frame:

 $ds^{2} = (1 - r^{2}\Omega^{2})dt^{2} - 2r^{2}\Omega dtd\phi - dr^{2} - r^{2}d\phi^{2} - dz^{2}$


The spacetime is restricted to the light cylinder $r\Omega < 1$. (Think of it as a mug wall)

[Ambrus, Chernodub, Fukushima, Mameda]

- If rotation is slow enough, one can ignore the space boundary.
- Example: in magnetic field, the extent of the wave functions of a particle in the radial direction is given by the magnetic length

$$l_B = 1/\sqrt{|qB|}$$

"Slow" rotation: $\Omega \ll \sqrt{|qB|}$

Note: "slow" rotation may in fact be extremely fast! It is only slow as compared to the magnetic field scale.

Relativistic and quantum model

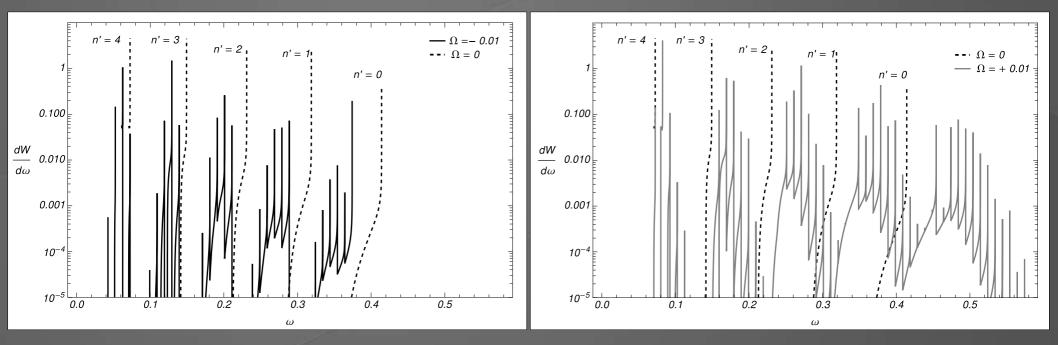
details in [MB, J. Kroth, K. Tuchin, N. Vijayakumar 2306.03863]

• Consider the Dirac equation with respect to the frame rotating with - Ω

$$(i\gamma \cdot D - M)\psi = 0, \quad D_{\mu} = \partial_{\mu} + \Gamma_{\mu} + qA_{\mu} \quad \begin{array}{l} \text{Fukushima, Mameda} \\ \text{Fukushima, Mameda} \\ \text{Symmetric gauge: } A^{\mu} = (0, -By/2, Bx/2, 0) \quad \begin{array}{l} \text{Christoffel} \\ \text{symbols:} \end{array} \quad \Gamma_{0} = -\Omega[\gamma^{x}, \gamma^{y}]/4 \\ \hline i\partial_{t}\psi = \widehat{H}\psi = \left(\widehat{H}_{0} + \Omega\widehat{J}_{z}\right)\psi \\ \text{Hamiltonian in stationary frame} \quad \begin{array}{l} \text{Total angular momentum} \\ \text{Energy shift: } +m\Omega \end{array}$$

Radiation intensity:

$$W = \sum_{n',a',\zeta'} \sum_{l,h} \int \frac{\mathrm{d}\mathbf{p}_{\mathbf{z}}'}{2\pi} \frac{\mathrm{d}^3\mathbf{k}}{(2\pi)^3} \boldsymbol{\omega} |\mathcal{S}|^2$$

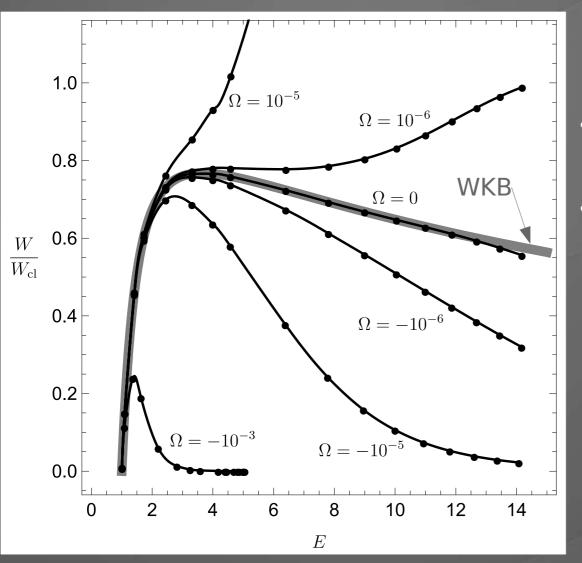

Photon frequency

Spectrum

$\hbar = c = M = 1$ qB = -0.1 n = 5, m = 7/2 $p_z = 0, E \simeq 1.4$

 $\Omega < 0$

 $\Omega > 0$

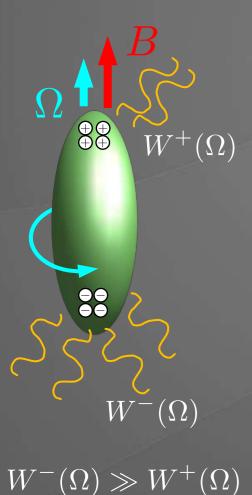


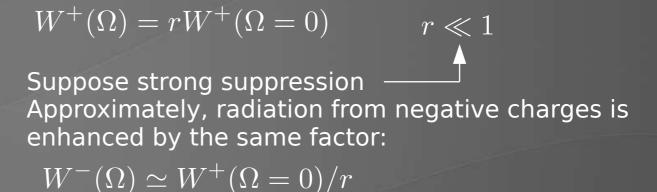
- Rotation breaks the degeneracy in total angular momentum number m
- Emission frequencies are shifted down by $\sim m\Omega$ and peak intensities reduced
- Only certain m give significant contribution

Total Intensity

$\hbar = c = M = 1 \quad qB = -0.01$

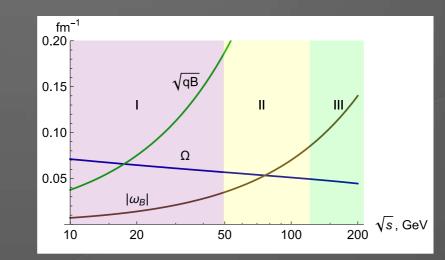
 $W_{cl} = \frac{2\alpha}{3} (qB)^2 \left(1 - \frac{1}{E^2}\right) E^2$

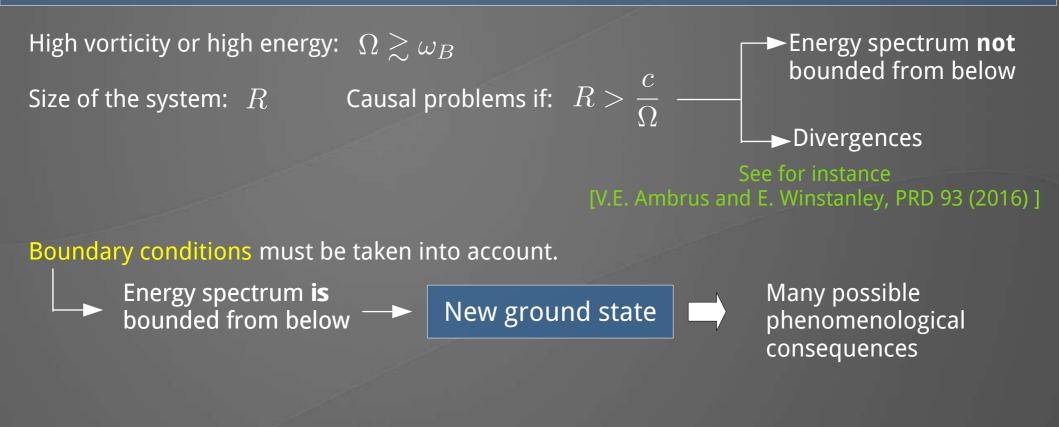



- Intensity increases or decreases depending on the sign of Ω.
- Deviation from Ω =0 is large at high E.

$$ω_B = \frac{|qB|}{E}$$
 decrease with E while Ω=constant.

Qualitatively in the QGP


When Ω and B are aligned, the radiation from positive charges is suppressed



Then, the total radiation overall is strongly enhanced:

 $\frac{W_{Tot}(\Omega)}{W_{Tot}(\Omega=0)} = \frac{W^+(\Omega) + W^-(\Omega)}{W^+(\Omega=0) + W^-(\Omega=0)} \simeq \frac{1}{2r} \gg 1$

Fast rotation and boundary conditions

Suppression of the CME in finite systems [MB and K. Tuchin, 2305.13149]

Fast rotation and boundary conditions

Proof of principle: Toy model, rotating cylindrical Coulomb potential $U=-rac{lpha}{r}$

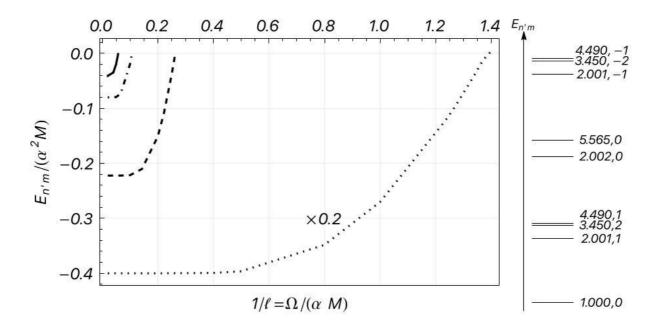
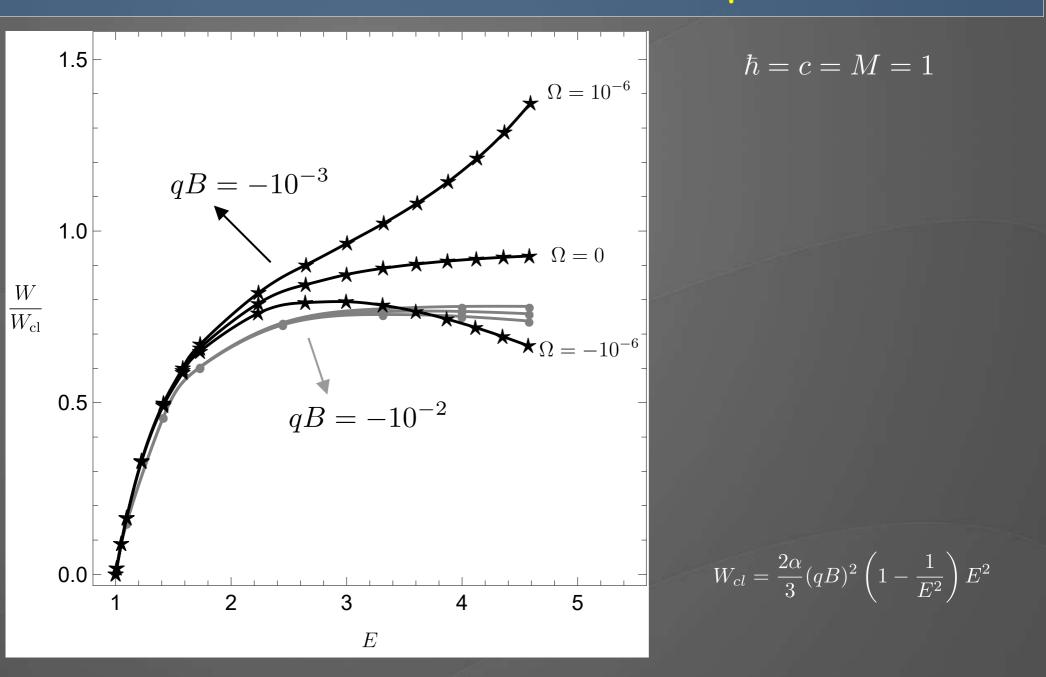
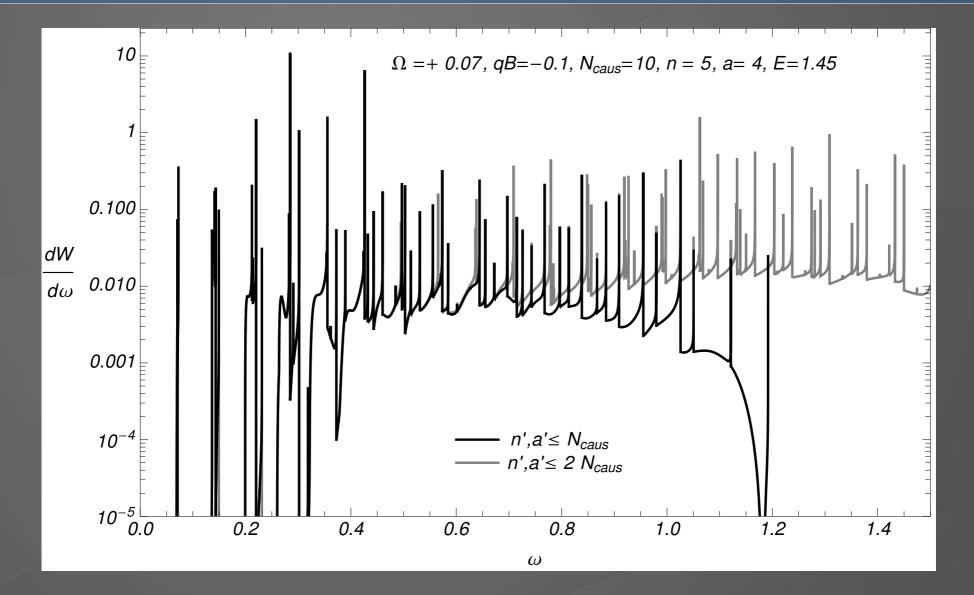


Fig. 3. Left panel: Energy levels m = 0, n' = 1, 2, 3, 4 (dotted, dashed, dashed-dotted and solid lines respectively) in the two-dimensional potential $U = -\alpha/r$ at different values of $1/\ell$. Right panel: energy levels with given n' (first number) and m (second number) at $\ell = 10$ and $\alpha \ell = 1$.

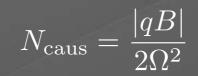
The binding energy decrease and cross into the continuum: dissociation of the bound state. (A realistic model needs 3D potential)

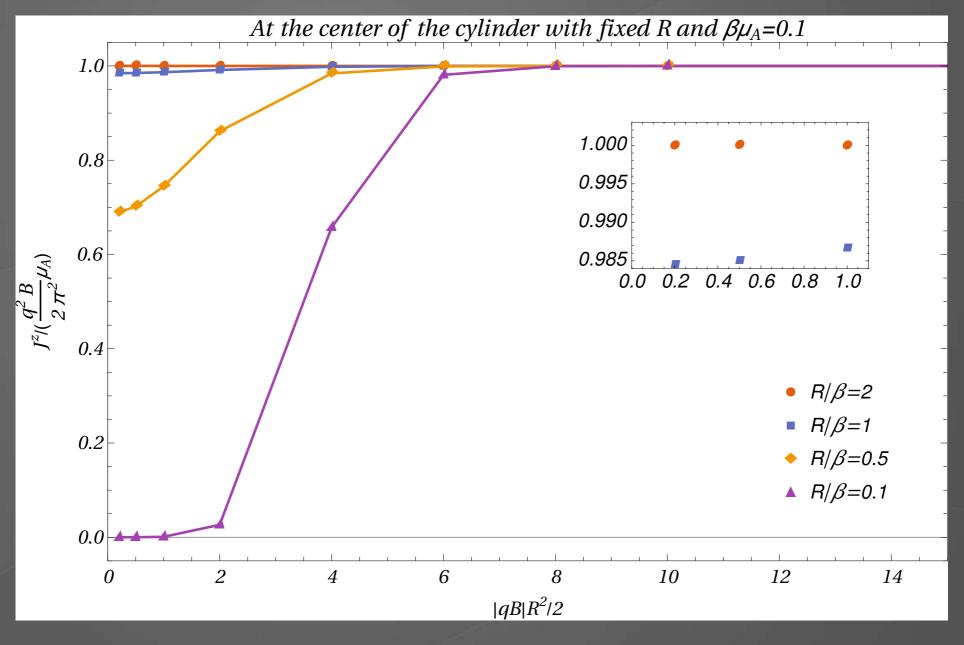

[MB and K. Tuchin, Nucl. Phys. A 1030 (2023), 2209.03991]

Summary and outlook


- A charge embedded into uniformly rotating medium in magnetic field radiates synchrotron radiation that depends on B and Ω .
- Radiation intensity increases for Ω>0 and decreases for Ω<0 (assuming qB<0)
- At any Ω the effect emerges for large enough energy \rightarrow Thus even if $\Omega \ll \sqrt{|qB|}$, there is an effect at high E.
- Fast rotation and boundary conditions?
- Synchrotron photons in the QGP?
- Not only Heavy-ion collisions. Astrophysics (Rotating black holes, compact stars)

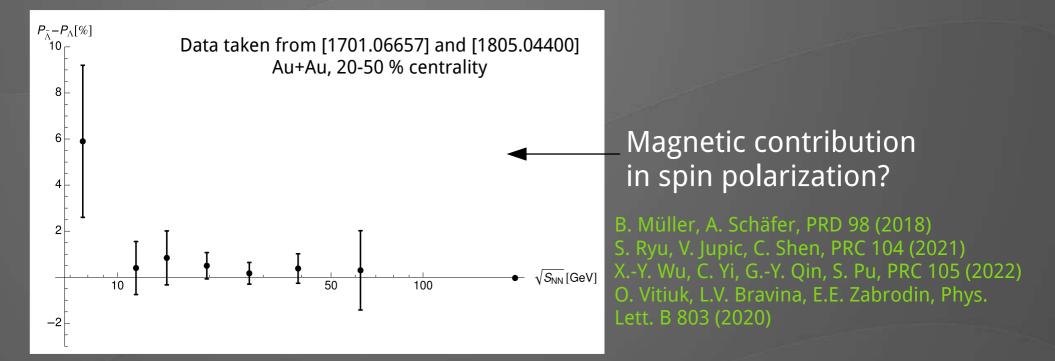
Thank you!


Other values of qB


Effect of the boundary

 $\hbar = c = M = 1$

CME with MIT BC [MB and K. Tuchin, 2305.13149]


R: radius of the cylinder;

 β =1/T: inverse temperature; μ _A: axial

µ_A: axial imbalance

Spin polarization induced by Magnetic field

$$S^{\mu} = \frac{1}{4m} (1 - n_F) \beta \left(qB^{\mu} - u^{\mu} \frac{qB \cdot p}{\varepsilon_p} \right)$$

Late time magnetic field is too small [H. Li, X. Xia, X-G. Huang, H-Z. Huang, 2306.02829]