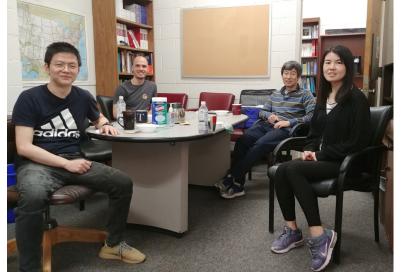
Improving the ZPC parton cascade with an exact solution of the relativistic Boltzmann equation

Zi-Wei Lin (林子威) East Carolina University (ECU)

THE INTERNATIONAL CONFERENCE ON CHIRALITY, VORTICITY AND MAGNETIC FIELD IN TH HEAVY ION COLLISIONS


International Conference Center University of Chinese Academy of Sciences

Outline

- Introduction
- Earlier test and improvement of the ZPC parton cascade
- Recent improvement with an exact solution of RBE
- Outlook and summary

Based on works with Todd Mendenhall, Xin-Li Zhao, Guo-Liang Ma, and Yu-Gang Ma, ...

National Science Foundation

Introduction: transport models for non-equilibrium

• For large systems at very high energies:

transport models are similar to hydrodynamics, transport models (using microscopic particles & scatterings) are complementary to hydrodynamics-based models (using $T_{\mu\nu}$, EoS & transport coefficients).

• For finite/small systems at finite energies:

non-equilibrium effects are expected to be important.One example is the escape mechanism for flow: interaction-induced response from kinetic theory to the anisotropic spatial geometry (*without collective flow*).

Liang He et al., PLB (2016); ZWL et al., NPA (2016); Hanlin Li et al., PRC (2019)

• Recent small system data also seem to show collective flow signals:

are they real signals from collectivity? do they require formation of a parton matter? is the small system far from or close to equilibrium? To answer these questions and study properties of parton matter/QGP, transport models/kinetic theory are crucial as they address non-equilibrium dynamics.

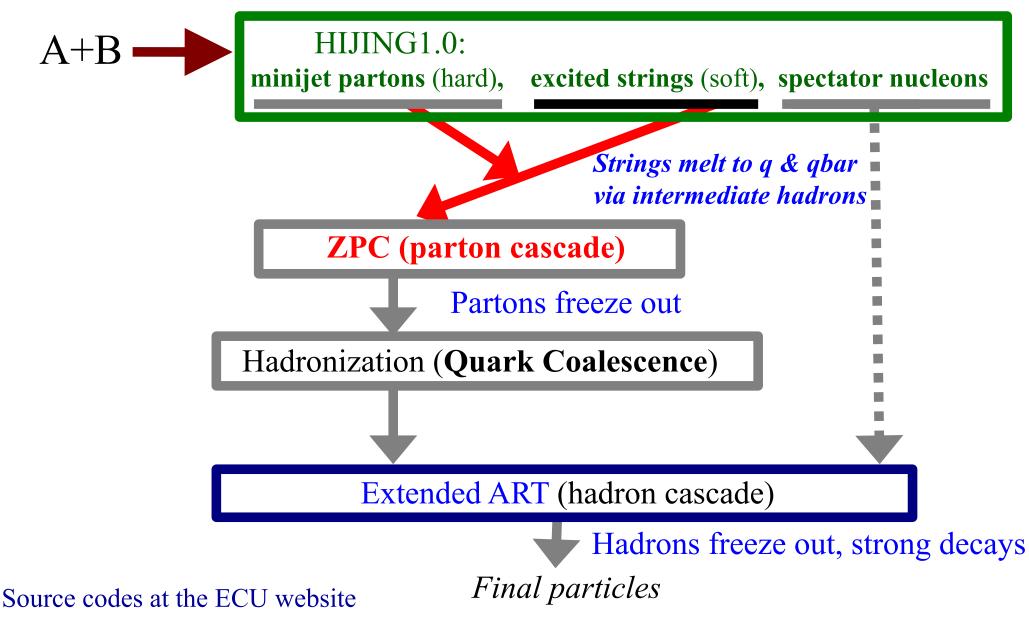
> Heiselberg & Levy, PRC (1999), Borghini et al., EPJC (2018), Kurkela et al., PLB (2018) & EPJC (2019), ...

Introduction: the ZPC parton cascade

Currently, ZPC solves the Boltzmann equation for 2-body scatterings:

$$\partial_t f + \frac{\partial x}{\partial t} \cdot \nabla_x f = C[[M^2]f_1f_2] \propto \sigma f_1f_2$$

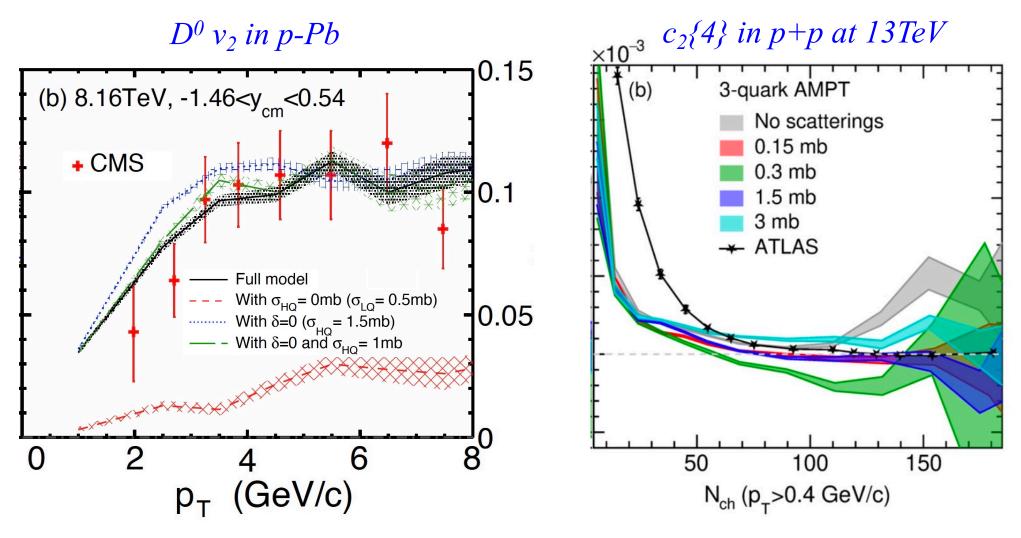
• $gg \rightarrow gg$ cross section in leading-order pQCD is used


σ is divergent for massless g, so a Debye screening mass μ is applied:

$$\begin{aligned} \frac{d\sigma_{gg}}{dt} &= \frac{9\pi\alpha_s^2}{2s^2} \left(3 - \frac{ut}{s^2} - \frac{us}{t^2} - \frac{st}{u^2}\right) \\ &\simeq \frac{9\pi\alpha_s^2}{2} \left(\frac{1}{t^2} + \frac{1}{u^2}\right) \simeq \frac{9\pi\alpha_s^2}{2t^2} \end{aligned}$$

Bin Zhang, Comp Phys Comm (1998); ZWL, Ko, Li, Zhang & Pal, PRC (2005)

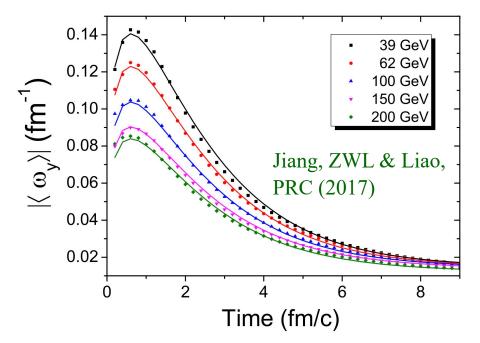
 $\frac{d\sigma}{dt} = \frac{9\pi\alpha_s^2}{2} \frac{1+a}{(t-\mu^2)^2}$ $a \equiv \frac{\mu^2}{s} \text{ is added to obtain an s-independent cross section: } \sigma = \frac{9\pi\alpha_s^2}{2\mu^2}$


Introduction: a multi-phase transport (AMPT) model

https://myweb.ecu.edu/linz/ampt/ ZWL, Ko, Li, Zhang & Pal, PRC (2005); ZWL & Liang Zheng, Nucl Sci Tech (2021)

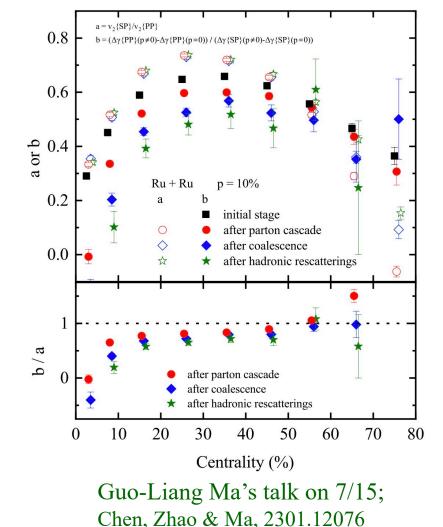
Introduction: the ZPC parton cascade

In the AMPT model, parton interactions in ZPC are responsible for generating flows in big systems & heavy flavor flows in small systems, they also significantly affect c_2 {4} in p+p collisions:



Chao Zhang et al., 2210.07767

Xin-Li Zhao et al., PLB (2023)


Introduction: the ZPC parton cascade

Parton interactions modify the evolution of vorticity fields (e.g. through flows), E&M fields & CME signals:

Zilin Yuan's talk on 7/19:

ZPC is extended to perform chiral anomaly transport under the influence of magnetic fields

So we need to check: *is the parton cascade accurate? if not, how to improve its accuracy?*

Currently, ZPC solves the Boltzmann equation for 2-body scatterings:

$$\partial_t f + \frac{\partial x}{\partial t} \cdot \nabla_x f = C[[M^2]f_1f_2] \propto \sigma f_1f_2$$

But ZPC/MPC cascade solution of the relativistic Boltzmann equation (RBE) at large densities *n* and/or cross sections σ is well known to suffer from causality violation.

Zhang, Comp Phys Comm (1998); Monlar & Gyulassy, PRC (2000); Cheng et al., PRC (2002); ...

Naively, the cascade solution using geometric cross sections is only accurate in the dilute limit when the opacity parameter χ is small:

$$\chi \equiv \frac{r}{\lambda} = \frac{\sigma^{3/2} n}{\sqrt{\pi}} < 1, \qquad \qquad \text{Zhang, Gyulassy} \\ \& \text{ Pang, PRC (1998)} \end{cases}$$

i.e., when the range of particle interaction r < mean free path λ

$$r \equiv \sqrt{\frac{\sigma}{\pi}} \qquad \qquad \lambda = \frac{1}{\sigma n}$$

Particle subdivision (or the test particle method)Pang, CU-TP-815 (1996)reduces/removes causality violation:Gyulassy, Zhang, Pang, PRC (1998)

$$\partial_t f + \frac{\partial x}{\partial t} \cdot \nabla_x f = C[[M^2]f_1f_2] \propto \sigma f_1f_2$$

This is because the above Boltzmann equation is invariant under transformation:

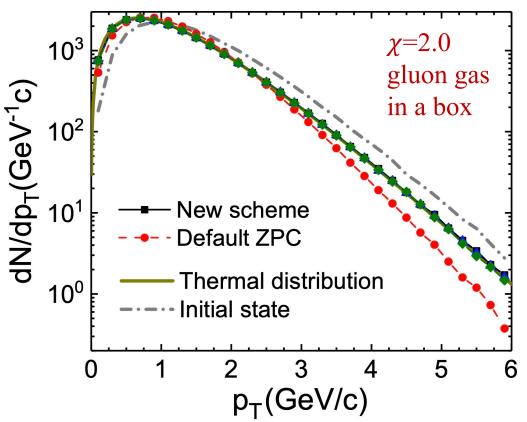
 $f \to f * l$ and $\sigma \to \frac{\sigma}{l}$ $(\frac{d\sigma}{dt} \to \frac{d\sigma}{dt}/l$ to be exact) Xin-Li Zhao, Ma, Ma & ZWL, PRC (2020)

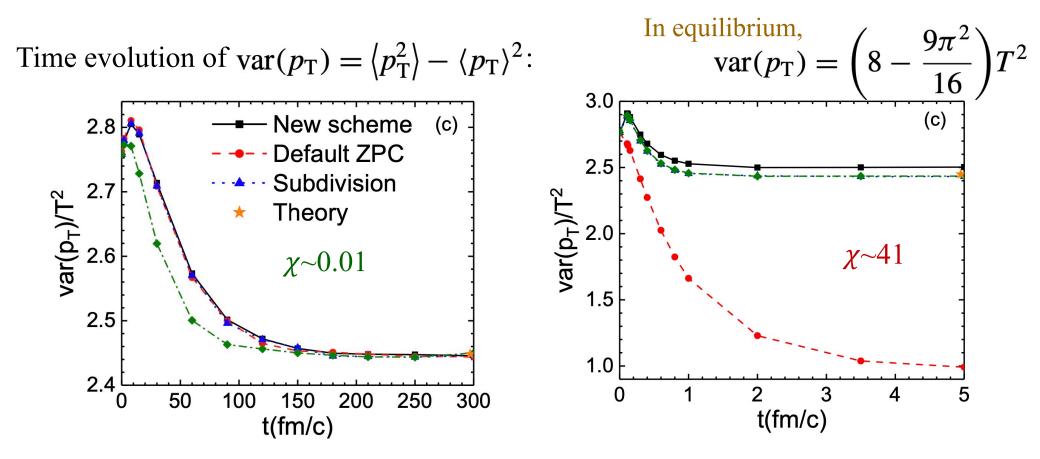
which reduces the opacity χ to approach the dilute limit:

$$\chi \equiv \frac{\sigma^{3/2}n}{\sqrt{\pi}} \longrightarrow \frac{\chi}{\sqrt{l}}$$
 l: subdivision factor

However, subdivision method is very CPU-consuming; more importantly, it drastically changes event-by-event fluctuations & correlations.

 \rightarrow We test then improve the accuracy of ZPC (*without using subdivision*)


We have tested ZPC for partons in a box:


Xin-Li Zhao, Ma, Ma & ZWL, PRC (2020)

Collision time Ordering time	$ct_1 \& ct_2$	$min(ct_1,ct_2)$	$(ct_1+ct_2)/2$	$max(ct_1,ct_2)$
$min(ct_1, ct_2)$	Α	B (new scheme)	С	D
$(ct_1+ct_2)/2$	Е	F	G (default ZPC scheme)	Н
$max(ct_1,ct_2)$	Ι	J	K	L

 $ct_1 \& ct_2$: collision times of the two partons after the boost to the global frame.

- Parton cascade has freedom in choosing the collision time (*ct*) and/or collision ordering time in global frame
- Default ZPC (*t-avg scheme*) fails to maintain thermal equilibrium at high opacities
- A new choice (*t-min scheme*) gives the expected thermal distribution

New time evolution of spectrum agrees well with subdivision results at small or large opacities Xin-Li Zhao, Ma, Ma & ZWL, PRC (2020)

For parton cascade in a box, we found a new parton subdivision method: to realize $f \rightarrow f * l$, instead of $N \rightarrow N * l \& V$ unchanged, we do N unchanged $\& V \rightarrow V/l$ This subdivision method does not increase the computation time much

& allows us to use a huge $l=10^6$ to reach the dilute limit.

Shear viscosity η and η/s :

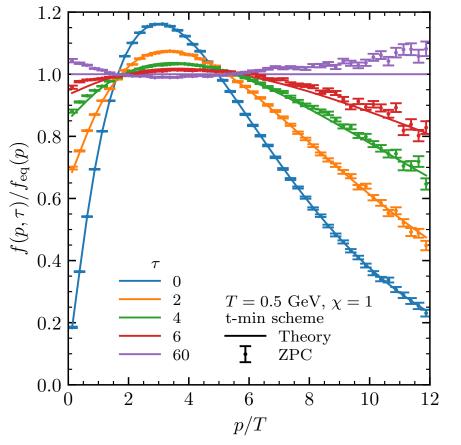
• the new t-avg scheme agrees well with Navier-Stokes result for isotropic scatterings even at very high opacities up to χ ~41

Default ZPC scheme fails at high χ .

S = 0.1 O = O Default scheme O = O Defa

 $\eta^{NS}=1.265\frac{T}{\sigma},$

De Groot, Van Leeuwen & Van Weert, Relativistic Kinetic Theory (1980); Huovinen & Molnar, PRC (2009); Plumari, Puglisi, Scardina & Greco, PRC (2012); MacKay and ZWL, EPJC (2022)


Xin-Li Zhao, Ma, Ma & ZWL, PRC (2020); ZWL & Liang Zheng, NST (2021)

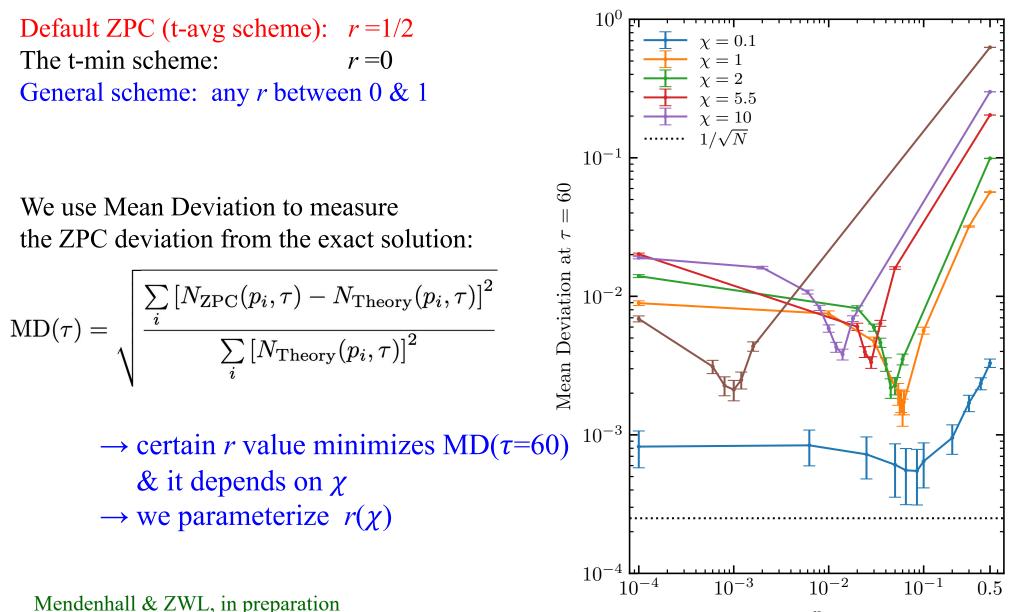
An exact solution of the relativistic Boltzmann equation has been found for a massless homogeneous gas under 2-body isotropic scatterings.

 \rightarrow We test the full time-evolution of momentum spectra & improve parton transport.

For non-expanding spacetime, the solution is

$$f_{\text{theory}}(p,\tau) = \exp\left(-\frac{p}{T\kappa(\tau)}\right) \left[\frac{4\kappa(\tau) - 3}{\kappa^4(\tau)} + \frac{p}{T}\frac{1 - \kappa(\tau)}{\kappa^5(\tau)}\right]$$

Bazow, Denicol, Heinz, Martinez & Noronha, PRL (2016) & PRD (2016) $\tau \propto t$ is a scaled time, $\kappa(\tau) = 1 - \exp(-\tau/6)/4$


• Spectra evolves from highly off-equilibrium to a thermal distribution $f_{eq}(p)$

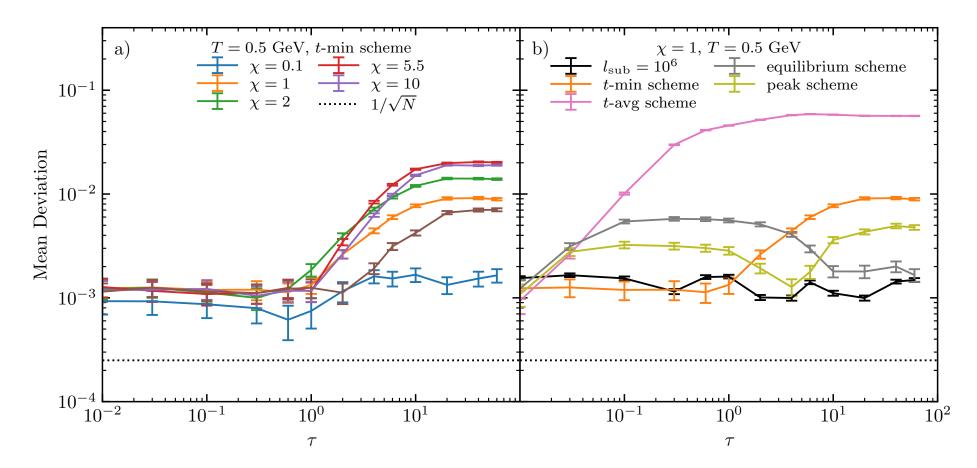
ZPC with *t-min scheme* performs quite well.

Mendenhall & ZWL, in preparation

We then use a more general collision scheme for parton collision time:

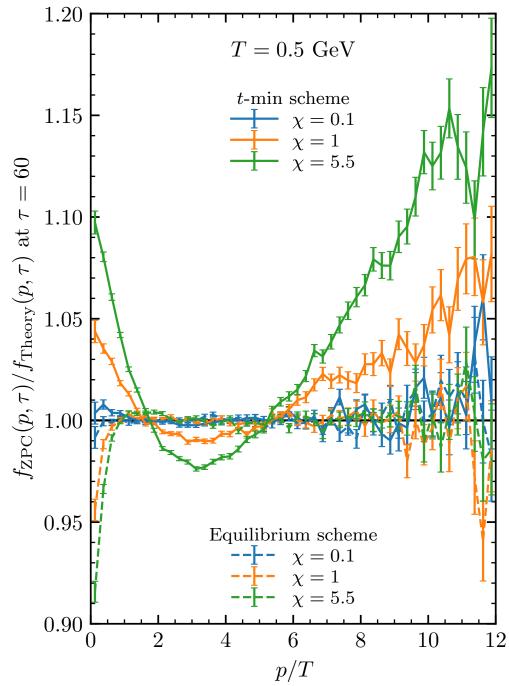
 $ct = \min(ct_1, ct_2) + r |ct_1 - ct_2|$

r

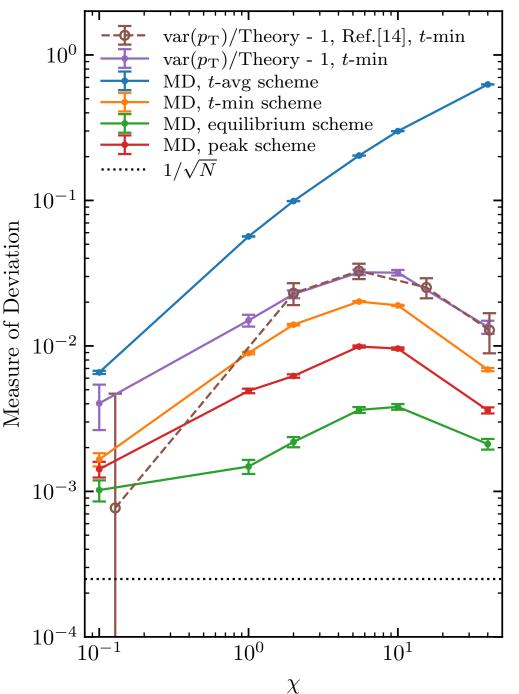

Recent improvement with an exact solution of RBE General collision scheme: $ct = \min(ct_1, ct_2) + r |ct_1 - ct_2|$

We parameterize $r(\chi)$ to minimize

• the Mean Deviation in equilibrium or

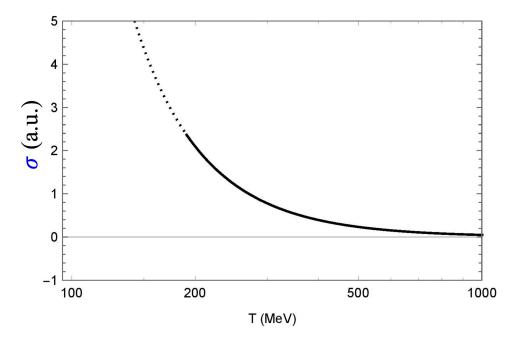

(equilibrium scheme)

• the peak Mean Deviation during the time evolution (*peak scheme*)


Momentum spectrum in equilibrium (over the theory spectrum):

equilibrium scheme gives much better overall spectra and smaller deviation from the exact solution *than t-min scheme*

Deviation vs opacity χ :


- *general collision schemes* are even better than *t-min scheme*
- they reduce mean deviation
 by a factor up to ~2 (*peak scheme*)
 or ~7 (*equilibrium scheme*):
 general scheme MD < 1% at all χ.
- Deviation vs χ is nonmonotonous, just like previous var(p_T) results
 [14] Xin-Li Zhao, Ma, Ma & ZWL, PRC (2020)

Outlook

• Causality violation in current AMPT is small due to small σ (<=3mb) Molnar 1906.12313

But finite-temperature pQCD $\rightarrow \mu \propto gT$

Arnold, Moore & Yaffe, JHEP (2003); Csernai, Kapusta & McLerran, PRL (2006)

So far, AMPT always uses constant $\sigma \& \mu$. With $\mu \propto gT$ $\rightarrow \sigma \propto 1/\mu^2$ will be larger at lower *T Improved ZPC here would still be accurate*. $\rightarrow \eta \propto T/\sigma, \ \eta/s \propto \frac{1}{T^2\sigma}$ will have the expected *T*- & *t*-dependences MacKay and ZWL, EPJC (2022)

 \rightarrow improve ZPC/AMPT as a dynamical model of finite-T QCD kinetic theory

 Recently we have modified ZPC to make its structure compatible with parton transport under E&M fields Mendenhall & ZWL, in preparation
 → next: include E&M fields to ZPC & study their evolution and effect on CME signals

Summary

- Transport models including ZPC and AMPT are especially suitable for studies of non-equilibrium dynamics
- We have tested and improved ZPC for massless partons in a box
- The default ZPC collision scheme is not accurate at large opacities
- New collision schemes can drastically improve the ZPC accuracy at large opacities, to the level of <1% mean deviation at all χ
- This lays the foundation to extend the test to parton systems with 3-d expansion, extend to parton transport under evolving E&M fields, and generalize ZPC with finite-T pQCD

Thank you for your attention!