Spin Hydrodynamics: Analytic Solutions, Causality, and Stability

Dong-Lin Wang (王栋林)

University of Science and Technology of China

7th International Conference on Chirality, Vorticity and Magnetic Field in Heavy Ion Collisions UCAS -- July 15-19, 2023

2023-7-18 Spin hydrodynamics: analytic solutions, causality, and stability. Dong-Lin Wang (USTC)

Outline

- Introduction
- Analytic solutions of first order spin hydrodynamics
 - Solutions in Bjorken expansion
 - Solutions in Gubser expansion
- Causality and stability analysis
 - First order spin hydrodynamics
 - Minimal causal (second order) spin hydrodynamics
- Summary

Introduction

Rotation and Polarization

picture from W. Florkowski, A. Kumar, and R. Ryblewski, Prog. Part. Nucl. Phys. 108, 103709 (2019)

• Large angular momentum in noncentral heavy ion collisions

$$J \sim \frac{A\sqrt{s}}{2}b \sim 10^5 \hbar$$

Vorticity of quark gluon plasma

(Total angular momentum conservation)

Polarization of particles along vorticity

Liang and Wang, PRL 94,102301(2005); PLB 629, 20(2005) Gao, Chen, Deng, Liang, Wang, Wang, PRC (2008)

Most Vortical Fluid and Spin Polarization

Adamczyk et al. (STAR), Nature 548, 62 (2017)

- Weak decay: $\Lambda \rightarrow p + \pi^-$
- Proton distribution:

 $\frac{dN}{d\cos\theta^*} = \frac{1}{2}(1 + \alpha_{\rm H}|\vec{\mathcal{P}}_{\rm H}|\cos\theta^*)$

- Large vorticity:
 - $\omega \approx (9 \pm 1) \times 10^{21} \mathrm{s}^{-1}$

Most vortical fluid ever observed!

Spin-Orbit Coupling in Hydrodynamics

Takahashi R, et al. Nature Physics, 2016, 12(1): 52-56.

How to describe the spin-orbit coupling in hydrodynamic level ?

Canonical Spin Hydrodynamics

Modified thermodynamic relations:

$$e + p = Ts + \mu n + \omega_{\mu\nu}S^{\mu\nu}$$
$$de = Tds + \mu dn + \omega_{\mu\nu}dS^{\mu\nu}$$

energy density:
$$e$$
 pressure: p
temperature: T entropy density: s
spin density: $S^{\mu\nu}$ spin chemical potential: $\omega_{\mu\nu}$

Florkowski, Ryblewsk, Kumar, Prog.Part.Nucl.Phys. (2019) Hattori, Hongo, Huang, Matsuo, Taya, PLB (2019) Hongo, Huang, Kaminski, Stephanov, Yee, JHEP (2021); JHEP (2022) Fukushima, Pu, Lecture Note (2020); PLB (2021); Li, Stephanov, Yee, PRL (2021); **DLW**, Fang, Xie, Pu, PRD (2021); PRD (2022) Weickgenannt, Wagner, Speranza, Rischke, PRD (2022); Cao, Hattori, Hongo, Huang, Taya, PTEP (2022) Hu, PRD (2021); PRC (2023); She, Huang, Hou, Liao, Sci. Bull (2023) Pu, Huang, Acta Phys.Sin. (2023)

Conservation equations:

$$\begin{bmatrix} \partial_{\mu}\Theta^{\mu\nu} = 0, & \partial_{\mu}j^{\mu} = 0, & \partial_{\lambda}J^{\lambda\mu\nu} = 0 \end{bmatrix}$$

Convertibility between spin and orbital angular momentum

Constitutive Relations from Entropy Principle

entropy principle

 $\partial_\mu {\cal S}^\mu$

First order constitutive relations:

$$\begin{aligned} h^{\mu} - \frac{e+p}{n} \nu^{\mu} &= \kappa [\Delta^{\mu\nu} \partial_{\nu} T - T(u \cdot \partial) u^{\mu}], \\ \pi^{\mu\nu} &= \eta_s \partial^{<\mu} u^{\nu>} + \zeta (\partial \cdot u) \Delta^{\mu\nu}, \\ q^{\mu} &= \lambda \left[\frac{1}{T} \Delta^{\mu\nu} \partial_{\nu} T + (u \cdot \partial) u^{\mu} - 4 \omega^{\mu\nu} u_{\nu} \right], \\ \phi^{\mu\nu} &= -\gamma \left(\Omega^{\mu\nu} - \frac{2}{T} \Delta^{\mu\alpha} \Delta^{\nu\beta} \omega_{\alpha\beta} \right), \end{aligned}$$

Halori, Hongo, Huang, Matsuo, Taya, PLB(2019); JHEP(2022); Fukushima, Pu, PLB(2021); Li, Stephanov, Yee, PRL(2021); **Entropy current:**

$$\mathcal{S}^{\mu} = su^{\mu} + \frac{1}{T}h^{\mu} + \frac{1}{T}q^{\mu} - \frac{\mu}{T}\nu^{\mu}$$

$$\Omega^{\mu\nu} \equiv -\Delta^{\mu\rho}\Delta^{\nu\sigma}\partial_{[\rho}(u_{\sigma]}/T) \qquad \Delta^{\mu\nu} \equiv g^{\mu\nu} - u^{\mu}u^{\nu}$$

$$\Theta^{\mu\nu} = (e+p)u^{\mu}u^{\nu} - pg^{\mu\nu} + 2h^{(\mu}u^{\nu)} + \pi^{\mu\nu} + \Theta^{[\mu\nu]},$$

$$J^{\lambda\mu\nu} = x^{\mu}\Theta^{\lambda\nu} - x^{\nu}\Theta^{\lambda\mu} + \Sigma^{\lambda\mu\nu},$$

$$j^{\mu} = nu^{\mu} + \nu^{\mu},$$

$$\Theta^{[\mu\nu]} = 2q^{[\mu}u^{\nu]} + \phi^{\mu\nu}, \quad \Sigma^{\lambda\mu\nu} = u^{\lambda}S^{\mu\nu} + \Sigma^{\lambda\mu\nu},$$

$$\sim \mathcal{O}(\partial)$$

8

Analytic Solutions of Spin hydrodynamics

- Spin hydrodynamics with Bjorken expansion (longitudinal expansion)
 DLW, Fang, Pu, PRD 104, 11404 (2021)
- Spin hydrodynamics with Gubser expansion (longitudinal & transverse expansion)

```
DLW, Xie, Fang, Pu, PRD 105, 114050 (2022)
```

Spin Hydrodynamics with Bjorken Expansion

$$\left[\partial_{\mu}\Theta^{\mu\nu} = 0, \quad \partial_{\mu}j^{\mu} = 0, \quad \partial_{\lambda}J^{\lambda\mu\nu} = 0\right]$$

picture from F. Becattini, M. A. Lisa, ARNPS 70 (2020)

✓ The hydrodynamic equations in a Bjorken flow are self-consistent if and only if

$$S^{\mu\nu} = 0$$
 for $(\mu\nu) \neq (xy)$

J. D. Bjorken, Phys. Rev. D 27, 140(1983)

✓ Bjorken flow in Spin hydrodynamics DLW, Fang, Pu, PRD 104, 11404 (2021)

Analytic Solutions in Bjorken Expansion

picture from Hongo, Huang, Kaminski, Stephanov, Yee, JHEP(2021)

Spin Hydrodynamics with Gubser Expansion

Equations are changed under Weyl rescaling •

$$\mathbb{R}^{3,1} \xrightarrow{\text{Weyl rescaling}} dS_3 \times \mathbb{R}$$

$$\hat{A}^{\mu_1 \dots \mu_m}_{\nu_1 \dots \nu_n}(x) = \tau^{\Delta_A} A^{\mu_1 \dots \mu_m}_{\nu_1 \dots \nu_n}(x)$$

$$\Delta_A = [A] + m - n$$

picture from F. Becattini, M. A. Lisa, ARNPS 70 (2020)

 x_{\perp}

$$\nabla_{\mu}\Theta^{\mu\nu} = 0$$

$$\nabla_{\lambda}(u^{\lambda}S^{\mu\nu}) = -2\Theta^{[\mu\nu]}$$
Weyl rescaling
$$\begin{array}{c} \hat{\nabla}_{\mu}\hat{\Theta}^{\mu\nu} = 2\tau^{-1}\hat{\Theta}^{[\mu\nu]}\hat{\nabla}_{\mu}\tau \\ \hat{\nabla}_{\lambda}(\hat{u}^{\lambda}\hat{S}^{\mu\nu}) = -2\hat{\Theta}^{[\mu\nu]} \\ + f^{\beta\mu\nu}\tau^{-1}\hat{\nabla}_{\beta}\tau \\ f^{\beta\mu\nu} \equiv \hat{u}_{\alpha}\hat{S}^{\alpha\nu}\hat{g}^{\mu\beta} + \hat{u}_{\alpha}\hat{S}^{\mu\alpha}\hat{g}^{\nu\beta} + \hat{u}^{\mu}\hat{S}^{\nu\beta} - \hat{u}^{\nu}\hat{S}^{\mu\beta} \\ \end{array}$$

$$u_{\mu} = \left(-\frac{1}{\cosh\rho}\frac{L^{2} + \tau^{2} + x_{\perp}^{2}}{2L\tau}, \frac{1}{\cosh\rho}\frac{x_{\perp}}{L}, 0, 0\right)$$

Gubser symmetry is broken !

DLW, Xie, Fang, Pu, PRD 105, 114050 (2022)

Gubser, PRD 82, 085027 (2010) Gubser, Yarom, NPB 846, 469 (2011)

12

 $\sinh \rho = -\frac{L^2 - \tau^2 + x_{\perp}^2}{2L}$

Spin hydrodynamics: analytic solutions, causality, and stability. Dong-Lin Wang (USTC) 2023-7-18

Analytic Solutions in Gubser Expansion

No exponential decay factor!

 $e \propto \tau^{-4/3} \quad T \propto \tau^{-1/3}$ $S^{\tau x_{\perp}} \propto L^{-2} \tau^{-1} \quad \omega^{\tau x_{\perp}} \propto L^{-2} \tau^{-1/3}$

Spin density and spin chemical potential are hydrodynamic variables !

DLW, Xie, Fang, Pu, PRD 105, 114050 (2022)

thermal vorticity thermal shear tensor $\Omega^{\mu\nu} \equiv \frac{1}{2} \nabla^{\nu} (u^{\mu}/T) - \frac{1}{2} \nabla^{\mu} (u^{\nu}/T)$ $\xi^{\mu\nu} \equiv \frac{1}{2} \nabla^{\mu} (u^{\nu}/T) + \frac{1}{2} \nabla^{\nu} (u^{\mu}/T)$

Causality and Stability Analysis

- First order spin hydrodynamics
- Minimal causal (second order) spin hydrodynamics

Xie, **DLW**, Yang, Pu, arXiv: 2306.13880

Acausal mode in First Order Spin Hydrodynamics

• Independent small perturbations on top of equilibrium satisfy

$$\partial_{\mu}\delta\Theta^{\mu\nu} = 0, \quad \partial_{\lambda}\delta J^{\lambda\mu\nu} = 0, \quad \partial_{\mu}\delta j^{\mu} = 0.$$

• Nontrivial solutions exist iff the corresponding determinant vanishes

$$\begin{vmatrix} -i\omega + (\gamma_{\perp} + \gamma')k^2 & iD_s k \\ -2i\gamma'k & -i\omega + 2D_s \end{vmatrix}^2 = 0$$

(B.2) of Phys.Lett.B 795 (2019) by Hattori, Hongo, Huang, Matsuo, Taya

One mode behaves as

$$\omega \propto k^2$$
 when $k \to \infty$

acausal mode !

Why Is It an Acausal Mode?

- Suppose that the perturbations have compact support at t = 0.
- If propagation speed is finite, the perturbations have compact support at any time.

$$\begin{split} \delta\varphi(t;\vec{k}) &\equiv \int_{\Omega(t)} d\vec{x} e^{i\vec{k}\cdot\vec{x}} \delta\varphi(t,\vec{x}) \quad e^{i\omega t} \sim \left\| \delta\varphi(t;\vec{k}) \right\| \leq C(t) \cdot e^{\operatorname{Im}(\vec{k}\cdot\vec{a})} \qquad a \in \Omega(t) \\ \text{perturbations: } \delta\varphi(t,\vec{x}) \qquad \text{compact support: } \Omega(t) \end{split}$$

Finite propagation speed
$$\longrightarrow \lim_{k \to \infty} \left| \frac{\omega}{k} \right|$$
 is bounded

E. Krotscheck, W. Kundt, Communications in Mathematical Physics 60, 171 (1978) P. D. Lax, Hyperbolic Partial Differential Equations (2006)

Therefore, $\omega \propto k^2$ is an acausal mode, even if it is a pure imaginary (damping) mode.

Acausality Implies Instability

picture from Gavassino, PRX (2022)

- Damped perturbation $\delta \varphi(p) > \delta \varphi(p_1) > \delta \varphi(p_2)$
- In Alice's frame $t_A(p) < t_A(p_1) < t_A(p_2)$
- In Bob's frame $t_B(p) > t_B(p_1) > t_B(p_2)$
- Instability: the perturbation is growing in Bob's frame

First order spin hydrodynamics is acausal and unstable !

Minimal Causal Spin Hydrodynamics

• Introduce nonzero relaxation times:

• The thermodynamic flux cannot instantaneously vanish/appear when thermodynamic force is suddenly switched off/on.

Israel, Stewart, Annals Phys. (1979); Muronga, PRC (2004); Koide, Denicol, Mota, Kodama, PRC (2007)

Complete second order spin hydrodynamics: Asaad Daher's talk on July 17th

2023-7-18 Spin hydrodynamics: analytic solutions, causality, and stability. Dong-Lin Wang (USTC)

Causality Analysis

By linear mode analysis, we study the causality of the minimal causal spin hydrodynamics.

- The modes $\,\omega \propto k^2$ with infinite propagation speed disappear.
- As $k \to \infty$, all modes behave as (finite propagation speed)

$$\omega = Ck + \mathcal{O}(k^0)$$
 or $\omega \ll k$

C: the functions of transport coefficients and relaxation times

• Under certain conditions, the minimal causal spin hydrodynamics is causal.

$$\lim_{k \to \infty} \left| \operatorname{Re} \frac{\omega}{k} \right| \le 1$$

Xie, **DLW**, Yang, Pu, arXiv: 2306.13880

Stability and Equations of State

Constraints for transport

Stability conditions:

Hattori, Hongo, Huang, Matsuo, Taya, PLB(2019); Sarwar, Hasanujjaman, Bhatt, Mishra, Alam, PRD (2023); Daher, Das, Ryblewski, PRD (2023); Xie, DLW, Yang, Pu, arXiv:2306.13880

Equations of state in linear region (isotropic background):

Equations of state in linear region (isotropic background):
Xie, DLW, Yang, Pu, arXiv:2306.13880

$$\delta \omega^{\mu\nu} = \chi_1 \delta S^{\mu\nu} + \chi_2 \Delta^{\mu\alpha} \Delta^{\nu\beta} \delta S_{\alpha\beta}$$

$$D_s = 4\gamma_s \frac{\delta \omega^{ij}}{\delta S^{ij}}$$

$$D_s = 4\gamma_s \frac{\delta \omega^{ij}}{\delta S^{ij}}$$

$$D_s = 4\gamma_s \frac{\delta \omega^{ij}}{\delta S^{ij}}$$

Spin susceptibility

Puzzle in Stability Conditions

Stability conditions obtained in small and large k limits are necessary but not sufficient !

$$\delta \varphi \sim e^{i\omega t - i\vec{k}\cdot\vec{x}} \quad \text{Im } \omega(k) > 0$$

- stable for $k \to 0$ and $k \to \infty$
- **unstable** for some finite *k*

Summary

- The analytic solutions to canonical spin hydrodynamics imply that the intrinsic spin of fluid cell can be hydrodynamic variable under certain conditions.
- > The canonical first order spin hydrodynamics is acausal and unstable.
- > The minimal causal (second order) spin hydrodynamics can be causal.
- > The stability for the minimal causal spin hydrodynamics depends on the EoS.
- > Causality and Stability in rotating background?

Thank you !

Infinite Propagation Speed

Diffusion equation: $\partial_t n - D_n \partial_x^2 n = 0$ **Dispersion relation:** $\omega \propto k^2$

The initial data n(0, x) is zero for $x \neq 0$

For any small time t > 0, n(t, x) is nonzero everywhere

Analytic solutions in Gubser Expansion

DLW, Xie, Fang, Pu, PRD 105, 114050 (2022)

> Nonzero spin components

$$S^{\tau x_{\perp}}, S^{\varphi \eta} \neq 0$$
 $(\tau, x_{\perp}, \varphi, \eta)$
> Self-consistent velocity profile in spin
hydrodynamics (without Gubser symmetry)

Self-consistent solution

$$S^{\tau x_{\perp}} = c_1 \frac{4L^2}{\tau} G(L,\tau,x_{\perp})^{-1}$$
$$S^{\varphi \eta} = c_2 \frac{4L^2}{x_{\perp}\tau^2} G(L,\tau,x_{\perp})^{-1} \underline{A(\rho)}$$

 $G(L, \tau, x_{\perp}) \equiv 4L^2\tau^2 + (L^2 - \tau^2 + x_{\perp}^2)^2$ $A(\rho)$: exponential decaying factor

picture from F. Becattini, M. A. Lisa, ARNPS 70 (2020)

$$x_{\perp}$$

$$z_{\sinh \rho = -\frac{L^2 - \tau^2 + x_{\perp}^2}{2L\tau}}$$

$$u_{\mu} = \left(-\frac{1}{\cosh\rho} \frac{L^2 + \tau^2 + x_{\perp}^2}{2L\tau}, \frac{1}{\cosh\rho} \frac{x_{\perp}}{L}, 0, 0\right)$$

Gubser, PRD 82, 085027 (2010) Gubser, Yarom, NPB 846, 469 (2011)