#### The 7th International Conference on Chirality, Vorticity and Magnetic Field in Heavy Ion Collisions

## **Effects of First-order Chiral Phase Transition in Heavy-Ion Collisions**



#### KaiJia Sun (孙开佳)

Fudan University kjsun@fudan.edu.cn

July 2023, UCAS, Beijing

#### **Chiral Symmetry**

P. Dirac, 1928

 $(i\partial\!\!\!/ -m)\psi(x)=0$ 



Y. Nambu, 1961

$$\langle ar{q}^a_{\,\mathsf{R}}\, q^b_{\,\mathsf{L}} 
angle = v\,\delta^a$$

 $M \propto - < \bar{q}q >$ 

In analogy with BCS theory for superconductivity

$$\partial^{\mu}J_{\mu5} = 2m_f i \bar{\psi}_f \gamma_5 \psi_f - \frac{N_f g^2}{16\pi^2} G^{\mu\nu}_{\alpha} \tilde{G}_{\alpha\mu\nu}$$
$$\mathcal{L}_{\theta} = -\frac{\theta}{32\pi^2} g^2 G^{\mu\nu}_{\alpha} \tilde{G}_{\alpha\mu\nu}$$

Chiral anomaly (when coupled to gauge fields) Strong CP violation









Spontaneous symmetry breaking:

$$\begin{split} &U(1)_V \times SU(N_f)_L \times SU(N_f)_R \\ &\to U(1)_V \times SU(N_f)_V \end{split}$$

Mass generation:



### **QCD** phase diagram and first-order **PT**

۲



Phase separation, spinodal decomposition(SD) Spinodal:  $\frac{\partial P}{\partial \rho_B} < 0$ Po Metastable  $\rho_B$ 



## **Probing QCD phase transition with light nuclei** (3)

C. M. Ko, NST 34, 80 (2023).

Talk by Shanjin Wu (Jul. 19th)



#### Large density fluctuations could lead to enhancements of $N_t N_p / N_d^2$

K. J. Sun, L. W. Chen, C. M. Ko, and Z. Xu, Phys. Lett. B 774, 103 (2017); K. J. Sun, C. M. Ko, and F. Li, PLB 816, 136258 (2021); E. Shuryak, J.M.Torres-Rincon et al., PRC 100, 024903(2019); S. Wu et al., PRC 106,034905(2022).

Why  $N_t N_p / N_d^2$ ?

(4)

Density matrix formulation Phase-space representation:

$$N_{d} = \frac{3}{4} \int d\Gamma f_{pn}(\vec{p}_{1}, \vec{r}_{1}, \vec{p}_{2}, \vec{r}_{2}) \times W_{d}(\vec{r}, \vec{p})$$
$$W_{d}(\vec{r}, \vec{p}) = \frac{1}{\pi\hbar} \int d\vec{r}' \psi_{d}^{*}(\vec{r} + \vec{r}') \psi_{d}(\vec{r} - \vec{r}') e^{2i\vec{p}\cdot\vec{r}'}$$
Wigner function(Gaussian):

$$W_d(r,k) = 8 \exp\left(-\frac{r^2}{\sigma_d^2} - \sigma_d^2 p^2\right)$$
  $\sigma_d \approx 2.26 \text{ fm}$ 

with density fluctuation and correlation:  $f_{np}(x_1, p_1; x_2, p_2) = \rho_{np}(x_1, x_2)(2\pi mT)^{-3}e^{-\frac{p_1^2 + p_2^2}{2mT}}$  $\rho_{np}(x_1, x_2) = \rho_n(x_1)\rho_p(x_2) + C_2(x_1, x_2)$ 

$$\rho_n(x) = <\rho_n> + \delta\rho_n(x) \quad \rho_p(x) = <\rho_p> + \delta\rho_p(x)$$
  
  $\delta\rho(x)$  denotes density fluctuation over space or inhomogeneity,

$$C_{\rm np} = \frac{\langle \delta \rho_n(x) \delta \rho_p(x) \rangle / \langle \langle \rho_n \rangle \langle \rho_p \rangle)}{\Delta \rho_{\rm n}} < \dots > \equiv \frac{1}{V} \int dx$$

$$\begin{split} \mathcal{C}_{2}(x_{1} - x_{2}) &\approx \lambda \langle \rho_{n} \rangle \langle \rho_{p} \rangle \frac{e^{-|x_{1} - x_{2}|/\xi}}{|x_{1} - x_{2}|^{1+\eta}} \quad (singular \ part \ only) \\ & \text{with } \xi \ being \ the \ density - density \ correlation \ length \\ & 0 < \langle \delta N^{2} \rangle \sim \int dx \mathcal{C}_{2}(x) \sim \lambda \xi^{2} \rightarrow \lambda > 0 \end{split}$$

Phys. Lett. B 774, 103 (2017);781, 499 (2018);816, 136258 (2021)  $N_d \propto Tr[\hat{\rho}_s \hat{\rho}_d]$ **Encodes many-body density** fluctuation/correlation  $N_d \approx \frac{3}{\sqrt{2}} \left(\frac{2\pi}{mT}\right)^{\frac{3}{2}} N_p \langle \rho_n \rangle \left[1 + C_{np} + \frac{\lambda}{\sigma_d} G\left(\frac{\xi}{\sigma_d}\right)\right]$  $N_t = \frac{3^{3/2}}{4} \left(\frac{2\pi}{mT}\right)^3 N_p \langle \rho_n \rangle^2 \left[1 + 2C_{np} + \Delta \rho_n + \frac{3\lambda}{\sigma_t} G\left(\frac{\xi}{\sigma_t}\right) + O(G^2)\right]$ limiting value =  $\sqrt{2/\pi}$  $G(z) = \sqrt{2/\pi} - \frac{1}{z}e^{\frac{1}{2z^2}} \operatorname{erfc}(\frac{1}{\sqrt{2z}})$ 0.6 J 0.4 0.2 0.0 0 2  $z = \xi / \sigma$  $\frac{N_t N_p}{N^2} \approx \frac{1}{2\sqrt{2}} \left| 1 + \Delta \rho_n + \frac{\lambda}{\sigma} G\left(\frac{\xi}{\sigma}\right) \right|$ Ratio:

#### **Recent STAR Measurements**



STAR: PRL130, 202302 (2023)



Nu Xu EMMI2023 Trieste

## In the following, I will discuss how the first-order chiral phase transition modify light nuclei production

#### Equation of State (extended NJL model)

The eNJL provides a flexible equation of state (EoS). The critical temperature can be easily changed by varying the strength of the scalar-vector interaction without affecting the vacuum properties.



K. J. Sun, C. M. Ko, S. Cao, and F. Li., Phys. Rev. D 103, 014006 (2021)

#### **In-medium quark mass**



#### K. J. Sun, C. M. Ko, S. Cao, and F. Li., Phys. Rev. D 103, 014006 (2021)

### **Box Simulation**

#### (8)



## **Relativistic Heavy-Ion Collisions**









$$N_{d} \propto W_{d}(\frac{x_{1} - x_{2}}{\sqrt{2}}, \frac{p_{1} - p_{2}}{\sqrt{2}})$$

$$N_{t} \propto W_{t}(\frac{x_{1} - x_{2}}{\sqrt{2}}, \frac{p_{1} - p_{2}}{\sqrt{2}}, \frac{x_{1} + x_{2} - 2x_{3}}{\sqrt{6}}, \frac{p_{1} + p_{2} - 2p_{3}}{\sqrt{6}})$$

$$Nigner \text{ function:} \quad W_{d}(r, k) = 8 \exp(-\frac{r^{2}}{\sigma_{d}^{2}} - \sigma_{d}^{2}k^{2}) \qquad \sigma_{d} \approx 2.26 \text{ fm}$$

$$W_{t}(\rho, \lambda, k_{\rho}, k_{\lambda}) = 8^{2} \exp(-\frac{\rho^{2}}{\sigma_{t}^{2}} - \frac{\lambda^{2}}{\sigma_{t}^{2}} - \sigma_{t}^{2}k_{\rho}^{2} - \sigma_{t}^{2}k_{\lambda}^{2}) \quad \sigma_{t} \approx 1.59 \text{ fm}$$

See K. J. Sun et al., arXiv:2207.12532(2022) for the more advanced treatment

R. Scheibl and U. W. Heinz, Phys. Rev. C59. 1585(1999)

### **Collision Energy Dependence**

K. J. Sun, et al., arxiv:2205.11010 (2022)



1. Without a critical point: The energy dependence of  $tp/d^2$  is almost flat.

2. With a first-order phase transition: The spinodal-instability-induced enhancement of  $tp/d^2$  increases as increasing the critical temperature.

STAR, arXiv:2209.08058(2022) Hui Liu (STAR), QM2022 T. A. Armstrong et al. (E864), Phys. Rev. C 61, 064908 (2000).





1. Without a critical point: The energy dependence of  $tp/d^2$  is almost flat.

2. With a first-order phase transition: The spinodal instability induced enhancement of  $tp/d^2$  during the first-order phase transition increases as increasing the critical temperature.

STAR, arXiv:2209.08058(2022) Hui Liu (STAR), QM2022 T. A. Armstrong et al. (E864), Phys. Rev. C 61, 064908 (2000).



#### (13)





The spinodal enhancement of  $tp/d^2$  subsides with increasing collision centrality because of smaller fireball lifetime in more peripheral collisions.

## **Centrality Dependence**

### (15)

K. J. Sun, et al., arxiv:2205.11010 (2022)



The spinodal enhancement of  $tp/d^2$  subsides with increasing collision centrality because of smaller fireball lifetime in more peripheral collisions.

The slope with EoS-I is 5 times smaller

- 1. Light nuclei production provides a promising probe to non-smooth QCD phase transition.
- 2. Spinodal instability during the first-order chiral phase transition could induce an enhancement of  $tp/d^2$  in central Au+Au collisions at  $\sqrt{s_{NN}} = 3 5$  GeV ( $T_c \ge 80$  MeV).

Effects on other observables e.g. flow, HBT, di-lepton production? More efforts are needed to understand the enhancement of  $tp/d^2$  shown in the STAR data.

#### Backup

#### **Final-state coalescence**

R. Scheibl and U. W. Heinz, PRC59. 1585(1999);

R. Scheibl and U. W. Heinz, PRC59. 1585(1999)



# Deuteron n p3H

**Coalescence Model** 

Density Matrix Formulation (sudden approximation)  $N_{i} = Tr(\hat{a}, \hat{a}_{i})$ 

Wigner function of light cluster

$$V_A = Tr(\hat{\rho}_s \hat{\rho}_A)$$
  
=  $g_c \int d\Gamma \rho_s(\{x_i, p_i\}) \times W_A(\{x_i, p_i\})$ 

Overlap between source distribution function and Wigner function of light nuclei

#### **Remnant density fluctuation in expanding systems**



-50 -50  $\mu$ K<sub>GBB</sub>

Planck Collaboration: Planck 2013 results. I.

Temperature anisotropy in the cosmic microwave background, which is now considered as the remnant of quantum fluctuations in the primordial Universe during the rapid inflation epoch.

#### Plank Collaboration, Astron. Astrophys. 571, A1 (2014)

#### **Effects of post-hadronization dynamics**



#### STAR: arXiv:2209.08058(2022)



K. J. Sun et al., arXiv:2207.12532(2022)



Triton yields are reduced by about a factor of 2 due to hadronic re-scatterings.

Post-hadronization dynamics have visible effects!

#### **Trajectories in the phase diagram**

Phase trajectories of central cells in the phase diagram

$$\overline{\rho^{N}} = \frac{\int d\mathbf{x} \rho^{(N+1)}(\mathbf{x})}{\int d\mathbf{x} \rho(\mathbf{x})} \qquad y_{2} = \frac{\left[\int d\mathbf{x} \rho(\mathbf{x})\right]\left[\int d\mathbf{x} \rho^{\mathbf{3}}(\mathbf{x})\right]}{\left[\int d\mathbf{x} \rho^{\mathbf{2}}(\mathbf{x})\right]^{\mathbf{2}}}$$



K. J. Sun, et al., arxiv:2205.11010 (2022)

#### **Memory Effects**

Survival of density fluctuation in an expanding fireball Off-equilibrium effects



K. J. Sun et al., Eur.Phys.J.A 57 (2021) 11, 313 K. J. Sun, et al., arxiv:2205.11010 (2022) Density moment:

$$\begin{split} \overline{\rho^{N}} &= \frac{\int d\mathbf{x} \rho^{(N+1)}(\mathbf{x})}{\int d\mathbf{x} \rho(\mathbf{x})} \\ y_{2} &= \frac{\left[\int d\mathbf{x} \rho(\mathbf{x})\right] \left[\int d\mathbf{x} \rho^{\mathbf{3}}(\mathbf{x})\right]}{\left[\int d\mathbf{x} \rho^{\mathbf{2}}(\mathbf{x})\right]^{\mathbf{2}}} \\ &\approx 1 + \frac{\int d\mathbf{x} (\delta \rho(\mathbf{x}))^{\mathbf{2}}}{\int d\mathbf{x} \rho_{0}^{\mathbf{2}}} \equiv 1 + \Delta \rho. \end{split}$$
If the expansion is self-similar or scale invariant

$$\rho(\lambda(t)x,t) = \alpha(t)\rho(x,t_h)$$

then  $y_2(t) = y_2(t_h)$ , i.e., remains a constant

'Memory effects' in the talk by Lijia Jiang "Dynamical effects on the phase transition signal"

'Memory effects': Large density inhomogeneity survives to kinetic freezeout