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Motivation
• Quantum chaos is associated with energy dynamics (holographic system)

• In chiral systems, energy is transported through the CME

à Any connection between “Quantum chaos” and “CME” ?
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Quantum chaos
• One important aspect of thermal systems:

Atypicality àevolutionà typicality (e.g., Gibbs ensemble)

• There is sensitive dependence on initial conditions:

initially similar (but orthogonal) states àevolveà to be quite different:

“Butterfly effect”

• This chaotic behavior is referred to as Scrambling.
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Exponential decrease of “Out-of-time-ordered correlators” (OTOC)
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Butterfly velocity
• OTOC of spatial operator

Butterfly speed
[Roberts, Shenker, Stanford, 1409.8180]

• Butterfly-cone
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OTOC and 𝒗𝐁 from experiment
Ising spin chain on a nuclear magnetic resonance (NMR) quantum simulator 

[Li, Fan Wang, Ye, Zeng, Zhai, Peng, Du 1609.01246]

Several other experiments:
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OTOC from eternal black hole
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Shock wave geometry in AdS
Calculating 𝛿 is equivalent to see 

the effect of a shock wave on the geometry:
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A comment
The butterfly speed obtained from Einstein gravity is isotropic:

measurement axis
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Our first goal
We want to calculate vB

in a holographic chiral system in the presence of a B

• What we need to find: the function h(x) on this background
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A bit technicality
Applying
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Magnetic field – No anomaly
Isotropic butterfly                               anisotropic butterfly
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Magnetic field – with anomaly
Isotropic butterfly                               asymmetric butterfly
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Generalization to 𝑼(𝟏)𝑨×𝑼(𝟏)𝑽
• In an upcoming work, we show

detecting       requires         and

• Hydrodynamic energy-momentum tensor in the system:

observing a            ≡ detecting chiral magnetic effect            

???
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So far we focused on analytical results in the limit

Let’s move on to the small     limit

We’ll perform high precision numerical calculations in the bulk of AdS   
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Due to the scale invariance, we choose to work with two new parameters:
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Numerical “known” results
D’Hoker and Kraus show that this has a phase transition at T=0

• There is no change in symmetry!

• The non-analytic behavior of quantities change

• At the critical point: 

• What we want to do is to move on vertical cuts towards       , 
and read off  
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Identification of QCP by butterfly 
At finite T: 

At T=0: 

• There is no transverse propagation

• We may define the QCP by the two following specific butterfly 
speeds:
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So far we perturbed the theory by a tensor operator with the scaling 
dimension Δ = 4.
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Towards Pole-skipping at T=0
So far we perturbed the theory by a tensor operator with the scaling 
dimension Δ = 4.
• Now (for technical issues) we proceed with a scalar operator ψ 𝑡, 𝑥 ,

with the same dimension.

• We calculate the pole-skipping point of 𝐺!!" 𝜔, 𝑘 :

• Previous studies (far away any QCP)
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What we find:
Near a quantum critical point:
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What we find:
Near a quantum critical point:

This suggests to take the following quantity as the order parameter:
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Discussion

• Butterfly velocity is a measurable quantity in experiment.
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Discussion

• Butterfly velocity is a measurable quantity in experiment.

• Observing the advertised splitting is a sign of CME

Ø One may think of detecting CME in some condensed matter system 
(simulation)

• Such transition has been observed in 𝑆𝑟!𝑅𝑢!𝑂". 

Ø Measuring butterfly speed in this (or in a similar) system 
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Thank you for your attention
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Scrambling measures
In a qubit system with

Prepare the system in the thermofield state

• perturb the system: apply       at  

• The state becomes:

• Scrambling destroys spin correlation
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Out-of-time-order correlator: OTOC
The correlator                    is in fact:      

• Or more generally:

• Similarly:      OTOC =
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Size of precursor growth
• The squared commutator

• Size of precursor             is the volume of region in y such that          

= a ball centered at x of the radius 

• Linear growth in time is checked numerically

in the spin chain
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Size of precursor growth
• The squared commutator

• Size of precursor             is the volume of region in y such that          

= a ball centered at x of the radius 

Butterfly speed
[Roberts, Shenker, Stanford, 1409.8180]
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Sound vs butterfly velocity
• We see that                      and

• This suggests:

1. Splitting of butterfly velocities might be originated just from chiral magnetic 
effects.

2. There might be a relation between hydrodynamics and quantum chaos in 
anomalous systems. Note that Hydro works well at scales 𝜔 ≪ 𝑇, while chaos 
is sensitive to scales 𝜔 ~ 𝑇 .

Confirmed by Pole-skipping
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