The 7th International Conference on Chirality, Vorticity and Magnetic Field in Heavy Ion Collisions

Mass splitting and spin alignment for ϕ mesons in a magnetic field in NJL model

Shu-Yun Yang

Xin-Li Sheng, SYY, Yao-Lin Zou, De-Fu Hou, arxiv: 2209.01872

2023/7/18

Outline

➤Motivation

≻Nambu-Jona-Lasinio model

- ➢Propagator and spin alignment of vector mesons
- ►Numerical Results

≻Summary

Motivation

Diagram of relativistic heavy ion collision evolution

- Strong magnetic field in non-central relativistic heavy-ion collisions.
- Sizeable contributions to chiral magnetic field, Λ's polarization, charge odd directed flow, magnetic catalysis, inverse magnetic catalysis, and phase structure of QGP.

Non-central collisions

Dmitri E. Kharzeev Prog. Part. Nucl. Phys. 75 (2014)

Weitian Deng, Xuguang Huang, Phys. Rev. C 85 (2012) 044907

Motivation

Z.-T. Liang and X.-N. Wang, Phys. Lett. B 629, 20 (2005), nucl-th/0411101. A. H. Tang, B. Tu, and C. S. Zhou, Phys. Rev. C 98, 044907 (2018), 1803.05777.

Spin alignment refers to 00-element of normalized spin density matrix for a vector meson with spin-1.

$$\rho_{00}(\mathbf{k}) \equiv \frac{\overline{\rho}_{00}(\mathbf{k})}{\sum_{\lambda=0,\pm 1} \overline{\rho}_{\lambda\lambda}(\mathbf{k})} \,.$$
$$\overline{\rho}_{\lambda\lambda'}(\mathbf{0}) = \begin{pmatrix} \overline{\rho}_{11} & 0 & 0\\ 0 & \overline{\rho}_{00} & 0\\ 0 & 0 & \overline{\rho}_{-1,-1} \end{pmatrix}$$

$ \rho_{00} = \frac{1}{3} $	No spin alignment
$ \rho_{00} > \frac{1}{3} $	Longitudinally polarized
$\rho_{00} < \frac{1}{3}$	Transversely polarized

M. Abdallah et al. (STAR) Nature 614 (2023), 2204.02302.

 ϕ and K^{*0} meson's spin alignment along

The STAR collaboration has measured the ϕ and K^{*0} meson's spin alignment along the out-of-plane direction and observes a significant positive deviation from 1/3 for the ϕ meson.

Relevant talks: Xin-Li Sheng, Yan-Qing Zhao, Minghua Wei

3 flavor Nambu--Jona-Lasinio model

In the NJL model, gluons are integrated out and quarks interact via local four-fermion interactions, which have the form that keeps the chiral symmetry.

3 flavor Nambu--Jona-Lasinio model:

Y. Nambu and G. Jona-Lasinio, Phys. Rev. 122, 345(1961).
Y. Nambu and G. Jona-Lasinio, Phys. Rev. 124, 246(1961).
S. P. Klevansky, Rev. Mod. Phys. 64, 649 (1992).

 $-K\left\{\det_{f}\left[\overline{\psi}(1+\gamma_{5})\psi\right] + \det_{f}\left[\overline{\psi}\left(1-\gamma_{5}\right)\psi\right]\right\}$ Six - quark Kobayashi - Maskawa - t' Hooft interaction

Lagrangian for quarks:

$$\mathcal{L}_q = \sum_{f=u,d,s} \overline{\psi}_f \left(i\gamma_\mu D_f^\mu - m_f - \frac{1}{2} q_f \kappa_f F_{\mu\nu} \sigma^{\mu\nu} \right) \psi_f,$$

Discussions of spin alignment in NJL model may help us better understand meson's spin structure in strong interacting system.

current quark masses

AMMs (anomalous magnetic moments)

Propagator of vector mesons

> Dyson-Schwinger equation under Random phase approximation

$$D^{\mu\nu}(k) = 4G_V \Delta^{\mu\nu}(k) + 4G_V \Delta^{\mu\alpha}(k) \Sigma_{\alpha\beta}(k) D^{\beta\nu}(k)$$
Projection operator
Self-energy

Covariant form of spin polarization vectors:

$$\epsilon^{\mu}(\lambda,k) = \left(\frac{\mathbf{k}\cdot\boldsymbol{\epsilon}_{\lambda}}{m_{V}},\boldsymbol{\epsilon}_{\lambda} + \frac{\mathbf{k}\cdot\boldsymbol{\epsilon}_{\lambda}}{m_{V}(\omega+m_{V})}\mathbf{k}\right)$$

Projecting Dyson-Schwinger equation:

$$D_{\lambda\lambda'}(k) = -4G_V \delta_{\lambda\lambda'} - 4G_V \sum_{\lambda_1=0,\pm 1} \Sigma_{\lambda\lambda_1}(k) D_{\lambda_1\lambda'}(k) \qquad D_{\lambda\lambda'}(k) = -\left[\frac{4G_V}{1 + 4G_V \Sigma(k)}\right]_{\lambda\lambda'}$$

 \geq

Spin alignment of vector mesons

Spin alignment in direction of magnetic field:

$$\rho_{00}^B(\mathbf{0}) \equiv \frac{\rho_{00}(\mathbf{0})}{\rho_{00}(\mathbf{0}) + 2\rho_{11}(\mathbf{0})}$$

Spin alignment in an arbitrary direction n (denoted by Euler angles (α, β, γ))

$$\rho_{00}(\mathbf{0}; \alpha, \beta, \gamma) = \frac{\rho_{00}(\mathbf{0})\cos^2\beta + \rho_{11}(\mathbf{0})\sin^2\beta}{\rho_{00}(\mathbf{0}) + 2\rho_{11}(\mathbf{0})}$$
$$= \frac{1}{2} \left\{ 1 - \rho_{00}^B(\mathbf{k}) + \left[3\rho_{00}^B(\mathbf{k}) - 1 \right]\cos^2\beta \right\}$$

Spin alignment is independent to Euler angles α and γ

For a fluctuating magnetic field, one have to take an average over the β -angle and the field strength.

Dynamic masses for quarks

Dynamical masses as functions of the temperature for quarks.

- Behavior of magnetic catalysis.
- With AMMs, for light quarks transition is first order, for the s quark, the transition is still second order.

Dynamical masses as functions of the magnetic field strength at T = 150 MeV.

- Quark mass $M_u > M_d$, because $|q_u| > |q_d|$.
- Nonvanishing AMMs, inverse magnetic catalysis.

Mass spectra for ϕ meson

- In the presence of a magnetic field, the dispersion relation of s quark is quantized as Landau levels. We observe multi-peak structures.
- Bound states will dissociate when T is large enough, indicating a Mott transition.

Shuyun Yang

Dynamical masses for ϕ meson

- Observed mass splitting between states with $\lambda = 0$ and $\lambda = \pm 1$. $M_{\phi,\lambda} = 0 < M_{\phi,\lambda} = \pm 1$.
- Nonzero AMMs, $M_{\phi\lambda} = 0 = 0$ even at lower temperatures.

• Corresponding to the Mott transition.

Spin alignment for ϕ meson

Spin alignments as functions of the temperature. The magnetic field strength is taken as $eB = 5 m_{\pi}^2$.

Y.-G. Yang, R.-H. Fang, Q. Wang, and X.-N. Wang, Phys. Rev. C 97, 034917 (2018), 1711.06008.

The coalescence model:

$$\rho_{00}^{\text{Non-rel. coal.}} = \frac{1}{3} + \frac{4}{9T^2}\mu_s^2 B^2$$

- ρ_{00}^{Bound} decreases towards 1/3 with an increasing T.
- T = 150 MeV, $\rho_{00}^{Bound} \approx \rho_{00}^{Non-rel.coal}$, T > 150 MeV, $\rho_{00}^{Bound} > \rho_{00}^{Non-rel.coal}$
- Especially, bound states with $\lambda = \pm 1$ vanish when T > 215 MeV, leading to the result of $\rho_{00} = 1$.
- Nonvanishing AMMs, $\rho_{00}^{Bound} = 0$ because all bound states have $\lambda = \pm 1$.

Spin alignment for ϕ meson

• When eB ~ 2.9 m_{π}^2 , $\rho_{00}^{Bound} < \frac{1}{3}$, which is a straightforward result of the Mott transition for states with $\lambda = 0$.

Summary

- \blacktriangleright Calculated spectral functions for ϕ mesons in a constant magnetic field.
- Observed mass splitting between longitudinally-polarized and transverselypolarized mesons.
- Spin alignment for \$\phi\$ meson bound states is larger than 1/3, qualitatively agree with recent STAR data. Spin alignment for resonance states gives a larger result.
- AMMs significantly modify the mass spectra and the spin alignment for \$\phi\$ meson.

Thank you for your attention!