The 7th International Conference on Chirality, Vorticity and Magnetic Field in Heavy Ion Collisions

Interplay between nuclear structure and the chiral magnetic effect in isobaric collisions

PRC 106, 034909 (2022)

Xin-Li Zhao, Guo-Liang 2023/07/18

Outline

- 1) Motivation
- 2) Results and Discussions
 - $\checkmark N_{\rm ch} \& v_2$
 - $\checkmark \Delta \delta \& \Delta \gamma$
- 3) Summary

Strong Magnetic Field in HIC

Chiral Magnetic Effect (CME)

Prog. Part. Nucl. Phys. 88 (2016) 1-28.

$$\overrightarrow{J} = \sigma_5 \overrightarrow{B} = \left(\frac{(Qe)^2}{2\pi^2}\mu_5\right) \overrightarrow{B}$$

Observables:
$$\gamma \equiv \left\langle \cos(\phi_{\alpha} + \phi_{\beta} - 2\Psi_{\text{RP}}) \right\rangle$$

$$= \left\langle \cos \Delta \phi_{\alpha} \cos \Delta \phi_{\beta} \right\rangle - \left\langle \sin \Delta \phi_{\alpha} \sin \Delta \phi_{\beta} \right\rangle \Longrightarrow \Delta \gamma \equiv \gamma^{OS} - \gamma^{SS}$$

$$= \left\langle \left\langle v_{1,\alpha} v_{1,\beta} \right\rangle + B_{\text{in}} \right\rangle - \left\langle \left\langle a_{1,\alpha} a_{1,\beta} \right\rangle + B_{\text{out}} \right\rangle$$

$$\delta \equiv \left\langle \cos(\phi_{\alpha} - \phi_{\beta}) \right\rangle \Longrightarrow \Delta \delta = \delta^{OS} - \delta^{SS}$$
₄

Isobaric Collisions

- ightharpoonup Ratio $\neq 1 \Longrightarrow$ Different background.
- Different initial nuclear structures, deformation or neutron skin?

Nuclear structure introduced in AMPT

Z.W. Lin, et al, Phys. Rev. C 72 (2005) 064901

Results for 18 Cases VS STAR

Charge Separation in AMPT

$$\vec{J} = \sigma_5 \vec{B} = \left(\frac{(Qe)^2}{2\pi^2} \mu_5\right) \vec{B}$$

Halo-Type Results VS STAR

- \succ At central and mid-central collisions, the $N_{\rm ch}~\&~v_2$ ratios are close to data.
- \triangleright The ratios have no obvious dependences with respect to f.
- \triangleright Overall, the results at small f are closer to data.

$\Delta \delta$ with Different f

$$\triangleright \delta \equiv \langle \cos(\phi_{\alpha} - \phi_{\beta}) \rangle, \ \Delta \delta = \delta^{OS} - \delta^{SS}$$

 \blacktriangleright At mid-central collisions, $\Delta\delta \propto f$.

$\Delta \delta$ with Different f

$$\triangleright \delta \equiv \langle \cos(\phi_{\alpha} - \phi_{\beta}) \rangle, \ \Delta \delta = \delta^{OS} - \delta^{SS}$$

- \blacktriangleright At mid-central collisions, $\Delta\delta \propto f$.
- At central & mid-central collisions, $\Delta \delta$ & its ratios are closer to data for f < 5%.

$\Delta \delta$ with Different f

$$\triangleright \delta \equiv \langle \cos(\phi_{\alpha} - \phi_{\beta}) \rangle, \ \Delta \delta = \delta^{OS} - \delta^{SS}$$

- \blacktriangleright At mid-central collisions, $\Delta\delta \propto f$.
- At central & mid-central collisions, $\Delta\delta$ & its ratios are closer to data for f < 5%.
- At peripheral collisions, model results are above the data.

$\Delta \gamma$ w/ Different f

$$\gamma = \langle \cos(\phi_{\alpha} + \phi_{\beta} - 2\Psi_{RP}) \rangle,$$

$$\Delta \gamma = \gamma^{OS} - \gamma^{SS}$$

At central & mid-central collisions, $\Delta \gamma$ & its ratios are much closer to data for $f \leq 5\%$.

$\Delta \gamma$ w/ Different f

$$\gamma = \langle \cos(\phi_{\alpha} + \phi_{\beta} - 2\Psi_{RP}) \rangle,$$

$$\Delta \gamma = \gamma^{OS} - \gamma^{SS}$$

- \triangleright At central & mid-central collisions, $\Delta \gamma$ & its ratios are much closer to data for $f \leq 5\%$.
- The results at f=2% & f=5% are similar to f=0.
 - In isobaric collisions, the CME signal is weak and need to more sensitive observables.

Final State Interaction

Final state interactions weaken the CME signal.

Final State Interaction

- Final state interactions weaken the CME signal.
- The ratios at initial state are consistent with final state.
- The differences of CME can keep to the final state in isobaric collisions.

Summary

- The neutron-skin has big effect in isobaric collisions.
- $\blacktriangleright \Delta \delta \& \Delta \gamma$ results can be reproduced by AMPT w/o or w/small CME strength.
- ➤ In isobaric collisions, initial CME signal is absent or small.
- Final state interactions significantly weaken the initial CME.
- ➤ More sensitive observables are required for searching the possible small CME signal in isobaric collisions.

Summary

- The neutron-skin has big effect in isobaric collisions.
- $\blacktriangleright \Delta \delta \& \Delta \gamma$ results can be reproduced by AMPT w/o or w/small CME strength.
- ➤ In isobaric collisions, initial CME signal is absent or small.
- Final state interactions significantly weaken the initial CME.
- More sensitive observables are required for searching the possible small CME signal in isobaric collisions.

Thank you for your attention!