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Quantum ChromoDynamics

The phenomena of QCD can be mapped into one phase diagram:

@ The main character of QCD phase [EYUerse - The Phases of QCD
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Framework of functional QCD method

Dyson-Schwinger equations (DSEs) and functional renormailization group (fRG)
approach are the nonperturbative approach in continuum QCD which contain the
features of both confinement and chiral symmetry breaking.

DSEs are the equations of motion in quantum field theory: |
oS
90 J
fRG is based on the idea of homotopy: J
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The truncation of the functional QCD methods

The truncation is required in functional QCD methods as the equations are not J
closed.

@ How to generally evaluate the truncation?
@ How to reduce the higher order correction and make the truncation
controllable?
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Effective Charge

The hints from effective charge: J
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AdS/CFT correspondence from fRG

fRG equation:
1
k@krk = §Tr[k8kRk(p) . Gk(p)] = /BF

Identifying k = 1/z, the equation becomes Holographic equation:
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The hints from the relation between fRG and holographic equation:

@ AdS/CFT correspondence is hold through the fixed point since only there the
potential can be uniquely determined.

@ The bound states spectrum (Regge trajectory, etc) can be studied through
AdS/CFT correspondence, and it is also a useful tool for studying phase
transition(universality class).

The fixed point simplifies the truncation:
@ The fixed point defines an "perturbative" expansion in infrared.
@ Only the running of propagator and vertex is relevant.

@ It is possible to construct a minimal truncation in quark gap equation which
can describe both the vacuum and the finite T and n physics



The optimised truncation:

The Yang-Mills sector is relatively separable. One can apply the data in vacuum:

:
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Compute the difference between finite T/u and vacuum:

Dy (K7 = Dy (K)o + ANELE(k) + AN (K),



In Landau gauge: _ .
With all quantities are expressed by the

8 running of two point functions, The Quark
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QCD phase diagram

A first estimation of QCD phase transition line:
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QCD phase diagram

Phase diagram in temperature-chemical potential region for 2+1 flavour QCD
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@ with no model parameters included
@ subleading term: the hadron resonance channel
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QCD thermodynamic properties

Currently, the functional QCD approaches can only calculate the quark potential
directly, while the gluon sector still awaits further investigations.

One may incorporate the lattice QCD simulation at 4 = 0 here to combine the
advantages of the two methods. One can calculate the quark number densities
{nq} at finite chemical potential and obtain the pressure by:

P(T,p) = PLattTO-i-Z/ ng(T,p)d

Tprivate comm. with N. Wink and J. M. Pawlowski
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QCD thermodynamic properties

The calculated number density, entropy and energy density in the plane of
temperature and chemical potential:
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As getting closer to CEP, the slopes of the thermodynamics quantities become
sharper.
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isentropic trajectories in the up to date scheme: J
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Summary:

@ A simple truncation which captures the main character of QCD and accessible
for the thermodynamics quantities.

@ CEP Estimation at around (T, ug) ~ (110,600) MeV, and EoS that is
consistent with the previous studies.

In the future:
@ Incorporating the EoS of QCD into hydrodynamics simulations;

@ Studying the global properties of QCD matter generated in HIC, for instance,
the transport coefficients and the polarization structure.

@ Investigating the spectral function of QCD states at finite T and .

Thank you! J
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