Examination of nucleon distribution with Bayesian imaging for isobar collisions

based on Phys. Rev. C 107, 064909

Yilin Cheng

Co-authors: Kai Zhou, Shuzhe Shi, Yugang Ma, Horst Stöcker

Motivation: -Understanding Heavy-ion collisions

-Mapping between the initial and final stage

Observables of final stage have a strong relationship with the initial state

Motivation: -Understanding Heavy-ion collisions

-Mapping between the initial and final stage

Nuclear Structure

Initial State

Motivation: -Understanding Heavy-ion collisions

-Mapping between the initial and final stage

Produced Particle Flow

Radial Flow Anisotropic Flow

$$
\frac{d^{2} N}{d \phi d p_{T}}=N\left(p_{T}\right)\left(\sum_{n} V_{\mathrm{n}} e^{-i n \phi}\right)
$$

D. Teaney and L. Yan, Phys. Rev. C 86, 044908

Motivation: -Understanding Heavy-ion collisions

-Mapping between the initial and final stage

Produced Particle Flow

Radial Flow Anisotropic Flow

$$
\frac{d^{2} N}{d \phi d p_{T}}=N\left(p_{T}\right)\left(\sum_{n} V_{\mathrm{n}} e^{-i n \phi}\right)
$$

D. Teaney and L. Yan, Phys. Rev. C 86, 044908

Approximate linear response in each event:

$$
\frac{\delta\left[p_{T}\right]}{\left[p_{T}\right]} \propto-\frac{\delta R_{\perp}}{R_{\perp}} \quad V_{n} \propto \mathcal{E}_{n}
$$

Slides from ATHIC2021, Chunjian Zhang's talk

Motivation: -Understanding Heavy-ion collisions

-Mapping between the initial and final stage

Slides from ATHIC2021, Chunjian Zhang's talk

Motivation: -Understanding Heavy-ion collisions
-Mapping between the initial and final stage

$$
\begin{aligned}
\hline \beta_{2} & \rightarrow \text { Quadrupole deformation } \\
\beta_{3} & \rightarrow \text { Octupole deformation } \\
a_{0} & \rightarrow \text { Surface diffuseness } \\
R_{0} & \rightarrow \text { Nuclear size }
\end{aligned}
$$

Monte-Carlo Glauber as Estimator

Initial state

$$
\begin{gathered}
\mathrm{E}, \varepsilon_{2}, \varepsilon_{3}, \mathrm{~d}_{\perp} \\
\sqrt{v} \\
\mathrm{~N}_{\mathrm{ch}}, \mathrm{v}_{2}\{2\}, \mathrm{v}_{3}\{2\},<\mathrm{p}_{\mathrm{T}}>
\end{gathered}
$$

Final state

Motivation: -Understanding Heavy-ion collisions

-Mapping between the initial and final stage

Plot from Chunjian Zhang's talk

Motivation: -Understanding Heavy-ion collisions
-Mapping between the initial and final stage

Infer the nuclear structure from final state observables

- In single collision system ?
- Simultaneously for isobar systems with ratios?

Plot from Chunjian Zhang's talk

Motivation: -Understanding Heavy-ion collisions
-Mapping between the initial and final stage

Infer the nuclear structure from final state observables

- In single collision system ?
- Simultaneously for isobar systems with ratios?

Bayesian inference

Plot from Chunjian Zhang's talk

Bayesian inference

$P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta) P(\theta)$

Bayesian inference

Bayesian inference

$$
\begin{aligned}
& \begin{array}{l}
\beta_{2} \rightarrow \text { Quadrupole deformation } \\
\beta_{3} \rightarrow \text { Octupole deformation } \\
a_{0} \rightarrow \text { Surface diffuseness } \\
R_{0} \rightarrow \text { Nuclear size }
\end{array}
\end{aligned}
$$

Bayesian inference

$$
\left.P(\mathcal{D} \mid \theta)=\frac{1}{\sqrt{(2 \pi)^{m} \operatorname{det} \Sigma}} \exp \left(-\frac{1}{2} y_{m}(\theta)-y_{e}\right]^{T} \Sigma^{-1}\left[y_{m}(\theta)-y_{e}\right]\right)
$$

Bayesian inference : Single system construction

It is possible to reconstruct the nuclear structure from the final state observablses in heavy-ion collisions

Bayesian inference : Single system construction

It is possible to reconstruct the nuclear structure from the final state observablses in heavy-ion collisions

Bayesian inference : Simultaneous Reconstruction for Isobar Systems

Starting from purely the ratios, one can not simultaneously determine the nuclear structure s of the two isobar systems.

Bayesian inference : Simultaneous Reconstruction for Isobar Systems
Taking the multiplicity distributions of the two isobar systems together with the ratios of $\varepsilon 2, \varepsilon 3$, and $\mathrm{d} \perp$, one can infer the isobar nuclear structures to very high precision.

Bayesian inference : Simultaneous Reconstruction for Isobar Systems

Radial flow ($<\mathrm{pT}\rangle$), which can be estimated by d_{\perp}, carries redundant information as the ratios of elliptic/triangular flows.

Summary and outlook

-Infer nuclear structure from final observables : paves the way for precise predict non-CME background

- In single systems:
works well
- In isobar systems:
only from all of the ratios can not work
single-system multiplicity distributions are provided can work ratio of radial flow is found to be nonessential
- Outlook: more realistic model needed; AMPT-based in progress.

Thank you!

$$
\delta O_{a}^{\mathrm{rel}} \equiv \sqrt{\frac{1}{d} \sum_{i=1}^{d}\left(\frac{O_{a, i}^{\mathrm{pred}}-O_{a, i}^{\mathrm{truth}}}{O_{a, i}^{\mathrm{truth}}}\right)^{2}}
$$

Comparison of relative difference between the ground truth and predicted values using Gaussian Processor with linear(green), quadratic(blue), 4th-order(red) and RBF(orange) kernels. As references, gray curves represent the differences due to the PCA truncation. Statistical errors over the mean value in the MC-Glauber modeling are also presented as black curves.

