Preliminary Optimization for the Forth CEPC Tracker

2022.1.19

Hao Liang (Jilin University)

On Behalf of the CEPC Tracker Team

Outline

1. Introduction

2. Optimization for the Forth CEPC Tracker

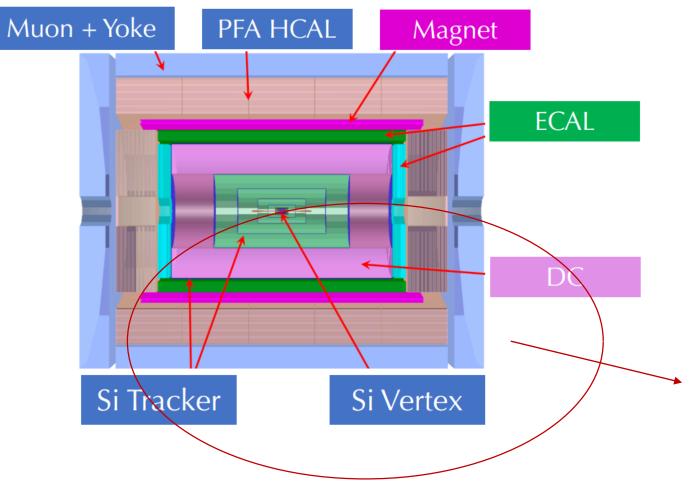
2.1 Vertex detector

2.2 Silicon Internal Tracker

2.3 Drift Chamber

2.4 Silicon External Tracker

3. Summary


• Higgs physics

Physics process	Measurands	Detector subsystem	Performance requirement	
$\begin{array}{l} ZH,Z\rightarrow e^+e^-,\mu^+\mu^-\\ H\rightarrow \mu^+\mu^- \end{array}$	$m_{H}, \sigma(ZH)$ BR $(H ightarrow \mu^{+}\mu^{-})$	Tracker	$\Delta(1/p_T) = 2 imes 10^{-5} \oplus rac{0.001}{p({ m GeV})\sin^{3/2} heta}$	
$H ightarrow b ar{b}/c ar{c}/gg$	${ m BR}(H o b ar{b}/car{c}/gg)$	Vertex	$\sigma_{r\phi} = 5 \oplus rac{10}{p({ m GeV}) imes \sin^{3/2} heta}(\mu{ m m})$	
$H \to q\bar{q}, WW^*, ZZ^*$	$BR(H \rightarrow q\bar{q}, WW^*, ZZ^*)$	ECAL HCAL	$\sigma_E^{\text{jet}}/E = 3 \sim 4\%$ at 100 GeV	
$H ightarrow \gamma \gamma$	${ m BR}(H o \gamma\gamma)$	ECAL	$\Delta E/E = rac{0.20}{\sqrt{E({ m GeV})}} \oplus 0.01$	

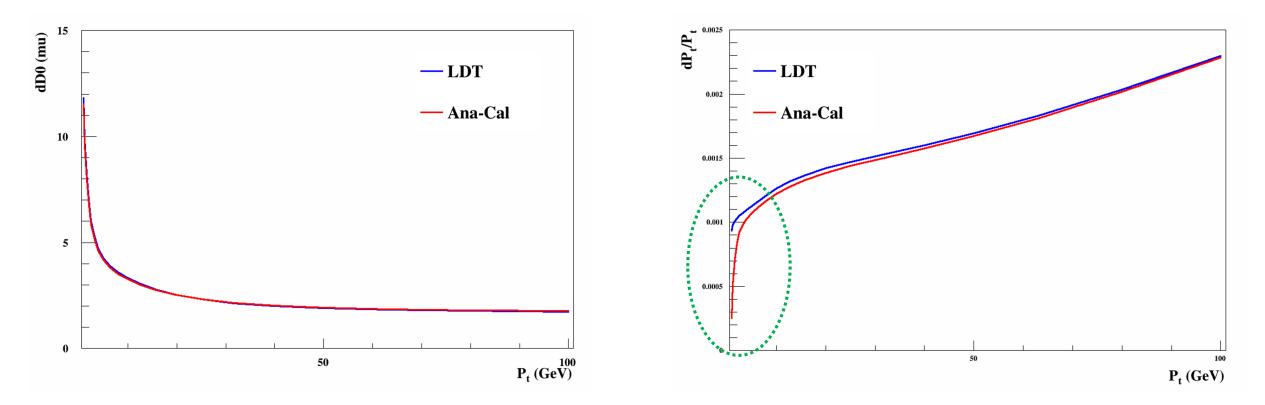
- Flavor physics: excellent PID, better than 2σ K/ π separation up to ~20 GeV
- EW measurements: High precision luminosity measurement, $\delta L/L \sim 10^{-4}$

Ref: https://indico.ihep.ac.cn/event/13888/session/8/contribution/56/material/slides/0.pdf

1. Introduction—CEPC Detector

The Forth CEPC detector concept

- Silicon Vertex & Silicon Tracker for momentum and impact parameter measurement
- Drift Chamber for PID
- Transverse crystal bar ECAL for π_0/γ reconstruction
- Solenoid magnet between HCAL and ECAL


Optimization goal:

To change the layout and measure the resolutions of $d_0 \& P_t$ as good as possible

 $(\mathbf{d_0}, \mathbf{z_0}, \boldsymbol{\phi}, \boldsymbol{\theta}, \mathbf{P_t})$

Ref: https://indico.ihep.ac.cn/event/13888/session/8/contribution/56/material/slides/0.pdf

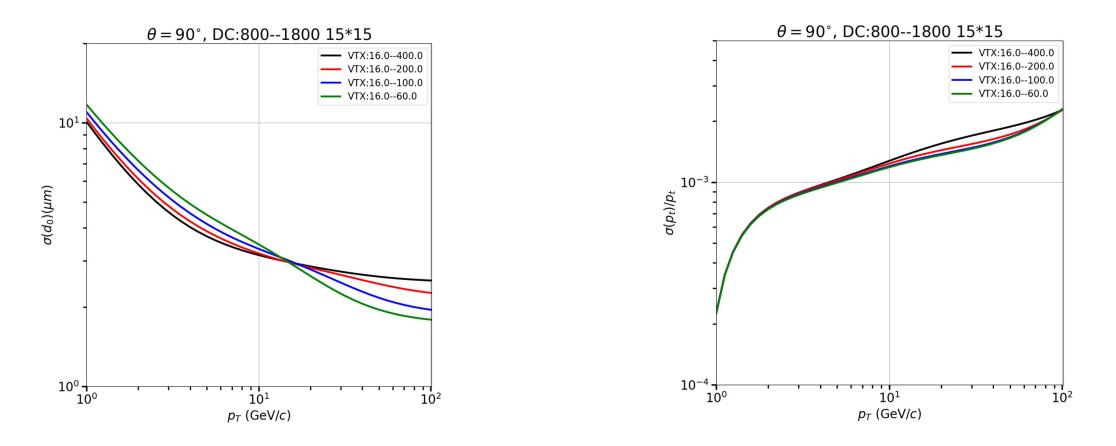
1. Introduction—Software comparison

• LDT by MatLab

Simulation and reconstructed with Kalman Filter with linear approximation O(10 minutes)

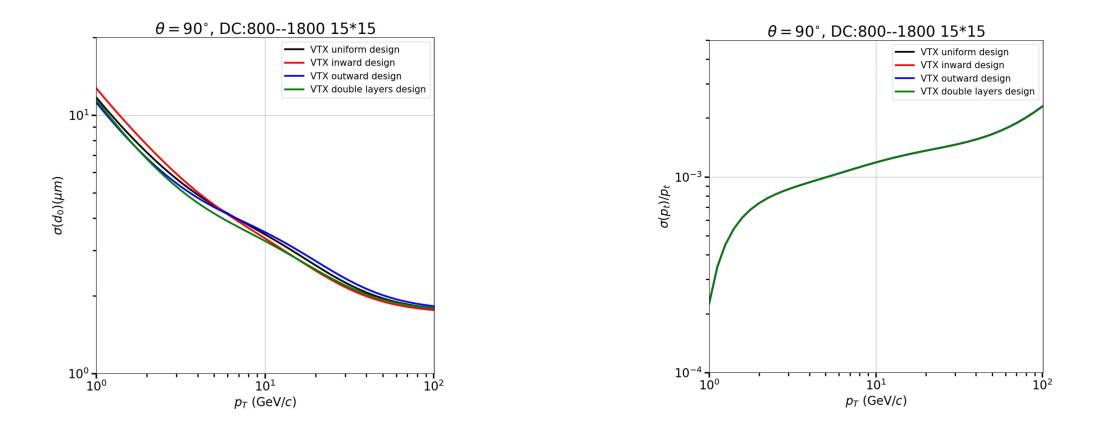
as result check

• Fast Software by Python

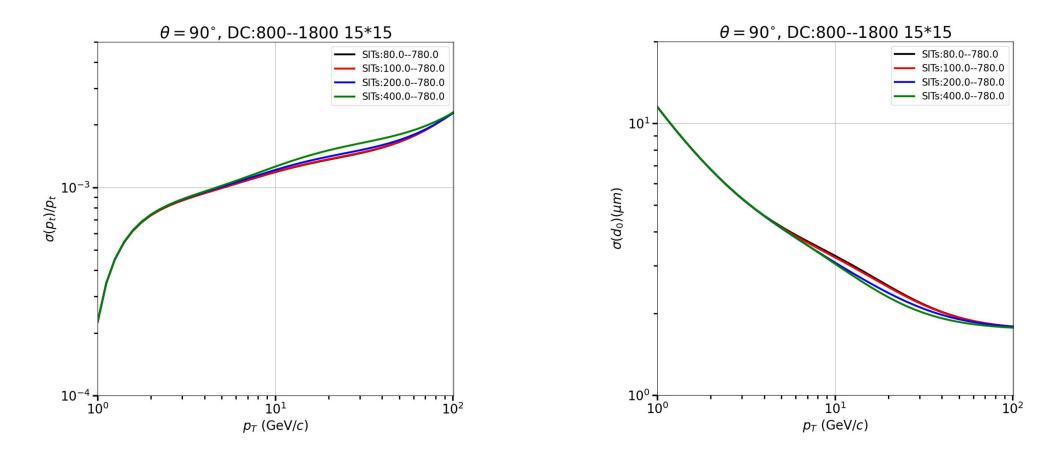

Analytic calculation based on least square method O(1 minutes), more flexible as main optimization tools

Ref: Nuclear Inst. and Methods in Physics Research, A 910 (2018) 127–132

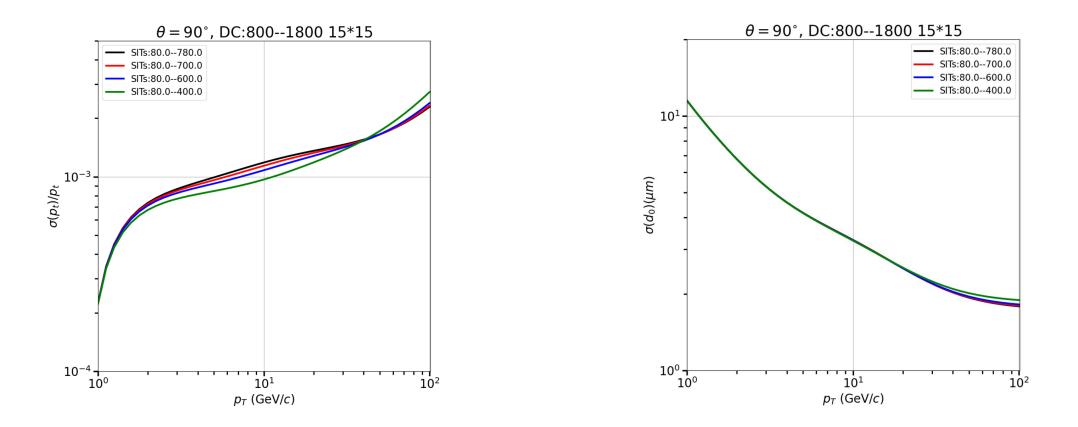
2. Initial tracker parameters


Layers	Radius(mm)	$\sigma_{R\phi}(mu)$	$\sigma_Z(mu)$	Thickness(X_0 %)
Beam Pipe	14.5	-	-	0.15
VTX	Six layers	2.8/6/4/4/4/4	2.8/6/4/4/4/4	0.10
Support of VTX layers	-	-	-	0.10
VTX-shell	One layer	-	-	0.15
SITs	Three layers	7.2/7.2/7.2	86.6/86.6/86.6	0.65
DC inner shell	One layer	-	-	0.104
DC wires (15x15mm) and gas	•••	100	2828	0.0081+0.00413
DC outer shell	1803.0	-	-	1.346
SET	1811.0	7.2	86.6	0.65

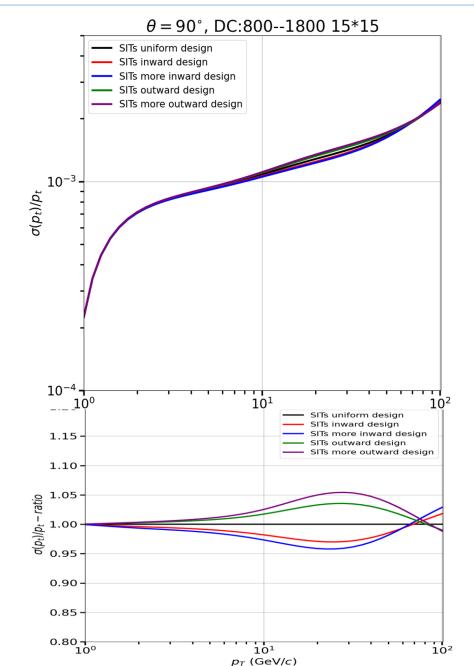
2.1 VTX – Inner radius fixed, changing Rout

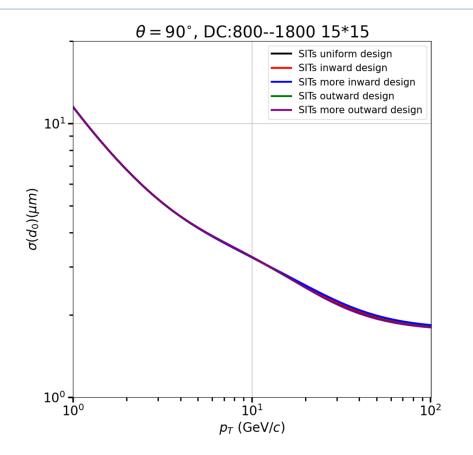


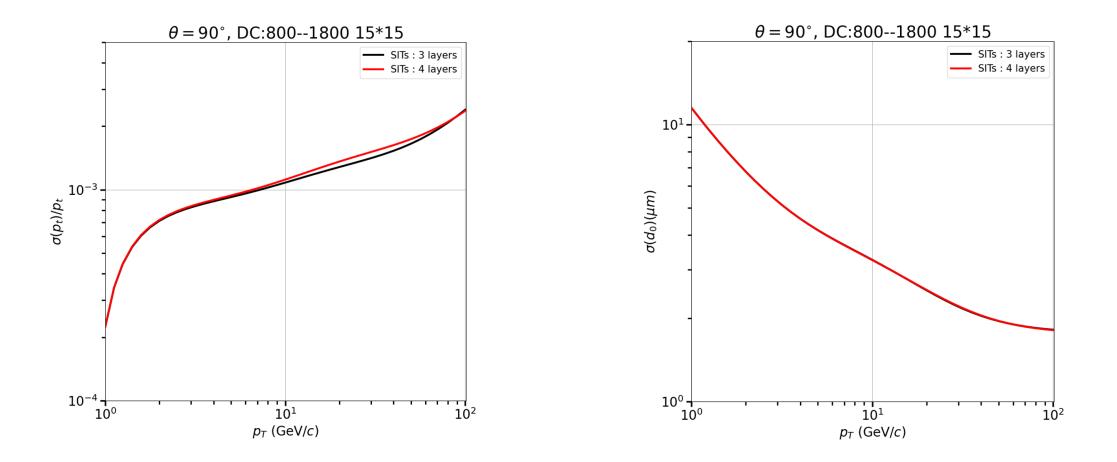
- Smaller Rout, a little worse $\sigma(d_0)$ at low Pt, but much better at high Pt
- Smaller Rout, better $\sigma(P_t)/P_t$
- Smaller Rout, less silicon cost
- 16.0 60.0 mm is recommended


2.1 VTX - Optimize layout with fixing Rin, Rout = 16, 60 mm

- Double layers design, less material of supports
- Double layers design, better $\sigma(d_0)$
- Little influence on $\sigma(P_t)/P_t$
- Double layers and equally spacing are favored



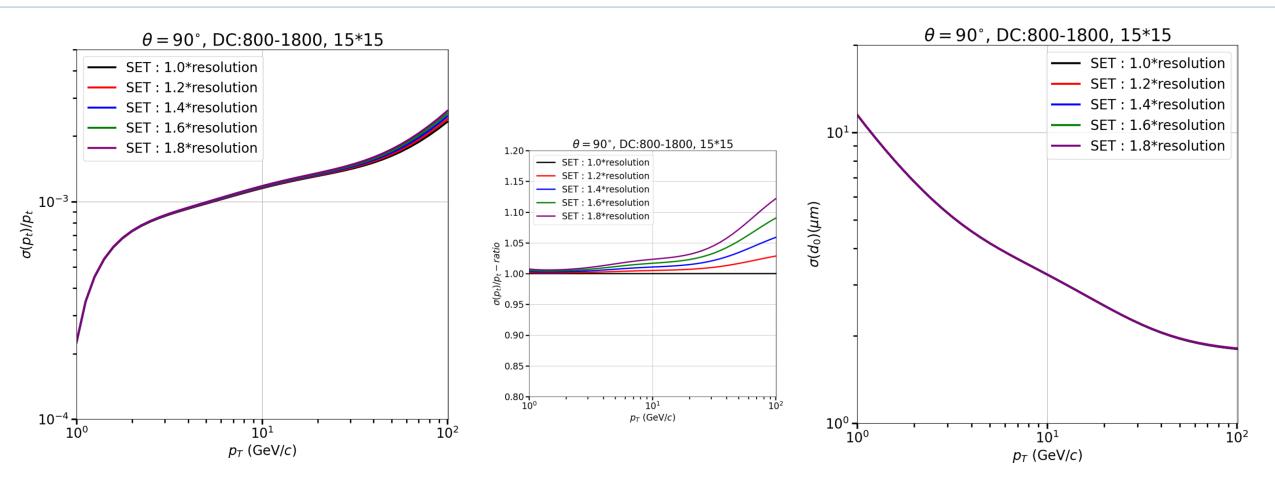

- Smaller Rin, better $\sigma(P_t)/P_t$
- Smaller Rin, a little bit worse $\sigma(d_0)$
- Smaller Rin, less cost
- 80.0 mm is recommended


- Smaller Rout, better $\sigma(P_t)/P_t$ at intermediate Pt, while a little worse at high Pt
- Smaller Rout, slightly worse $\sigma(d_0)$
- Smaller Rout, less cost
- 600.0 mm is recommended

2.2 SITs – layout (position of the middle layer)

- Inward layout, better $\sigma(P_t)/P_t$ except > 50 GeV
- Little influence on $\sigma(d_0)$
- Inward design is recommended

- More material & more multiple-scattering
- No improvement to $\sigma(P_t)/P_t \& \sigma(d_0)$
- 3 layers of SITs is recommended


- Mainly determined by PID
- $\delta R >= 1.0 \text{ m}$
- Keep 800 1800 mm by now
- To be updated according to PID study

2.3 DC – cell-size

 $\theta = 90^{\circ}$, DC:800--1800mm $\theta = 90^{\circ}$, DC:800--1800mm DC-cellsize: 15*15 DC-cellsize: 15*15 DC-cellsize: 10*10 DC-cellsize: 10*10 DC-cellsize: 18*18 DC-cellsize: 18*18 DC-cellsize: 20*20 DC-cellsize: 20*20 10^{1} $\theta = 90^{\circ}$, DC:800--1800mm 1.20 DC-cellsize: 15*15 DC-cellsize: 10*10 1.15 α(p_t)/p_t DC-cellsize: 18*18 DC-cellsize: 20*20 σ(d₀)(μm) 1.10 1.05 · α(pt)/pt – 0.95 0.90 0.85 0.80 | 10⁰ 102 101 p_T (GeV/c) 10^{-4} 10⁰ - 101 10¹ 100 10^{2} 100 10² *p⊤* (GeV/*c*) *pT* (GeV/*c*)

- Larger cell-size, less material & less multiple-scattering \rightarrow better $\sigma(P_t)/P_t$ at low Pt
- Larger cell-size, easier engineering
- Hardly affects $\sigma(d_0)$
- So larger cell-size favored

2.4 SET – resolution

- Little effect on $\sigma(P_t)/P_t$ when spatial resolution getting worse
- No influence on $\sigma(d_0)$
- Less cost when loosing the requirement on spatial resolution
- Could take larger pixel size

3. Summary

Tracker layer optimization gives some preliminary recommendations

- VTX
 - > smaller Rin & Rout of the VTX get better $\sigma(d_0)$ and $\sigma(P_t)/P_t$
 - double layers design favored
- SIT
 - ➢ Favors smaller Rin & Rout, and inward layout
- Drift chamber
 - Volume determined by PID
 - Tracking favors larger cell-size
- SET
 - > The requirement on spatial resolution could be loosed

3. Summary – Recommended parameters

Layers	Radius(mm)	$\sigma_{R\phi}(\mathrm{mu})$	$\sigma_Z(mu)$	Thickness $(1\%/X_0)$
Beam Pipe	14.5	-	-	0.15
VTX	16/18/37/39/58/60	2.8/6/4/4/4/4	2.8/6/4/4/4/4	0.10
Support for each VTX layer	-	-	-	0.10
VTX-shell	65.0	-	-	0.15
SITs	80/253/600	7.2/7.2/7.2	86.6/86.6/86.6	0.65
DC inner shell	798	-	-	0.104
DC wires (20*20mm) and gas	800 1800	100	2828	0.0108+0.0031
DC outer shell	1803.0	-	-	1.346
SET	1811.0	11.5	138.5	0.65