

Application of Hough Transformation in ECAL Reconstruction

Zhang Yang On behalf of CEPC ECAL software group

19/Jan/2022

Outline

Introduction

• Application of Hough transformation in ECAL reconstruction

Preliminary result of performance

Summary

Introduction

- CEPC: A high precision Higgs/Z factory
 - Requiring jet energy resolution 3%~4% at 100GeV.
 - Fine γ/π^0 separation for flavor physics.
- Particle Flow Approach (PFA): reconstruct every single particle in an event.
 - Avoid double counting of energy from same particle —
 - Separate energy deposits from different particles
- Components of jet energy resolution:

$$\sigma_{jet} = \sqrt{\sigma_{track}^2 + \sigma_{EM}^2 + \sigma_{Had}^2 + \sigma_{confusion}^2}$$

Physics process	Measurands	Detector subsystem	Performance requirement
$ZH, Z \rightarrow e^+e^-, \mu^+\mu^-$ $H \rightarrow \mu^+\mu^-$	$m_H, \sigma(ZH)$ BR $(H \to \mu^+ \mu^-)$	Tracker	$\Delta(1/p_T) = 2 \times 10^{-5} \oplus \frac{0.001}{p(\text{GeV}) \sin^{3/2} \theta}$
$H \to b \bar{b} / c \bar{c} / g g$	${\rm BR}(H\to b\bar{b}/c\bar{c}/gg)$	Vertex	$\sigma_{r\phi} = 5 \oplus \frac{10}{p(\text{GeV}) \times \sin^{3/2} \theta} (\mu\text{m})$
$H \rightarrow q\bar{q}, WW^*, ZZ^*$	$BR(H \to q\bar{q}, WW^*, ZZ^*)$	ECAL HCAL	$\sigma_E^{\text{jet}}/E = 3 \sim 4\%$ at 100 GeV
$H\to\gamma\gamma\gamma$	${\rm BR}(H\to\gamma\gamma)$	ECAL	$\begin{array}{l} \Delta E/E = \\ \frac{0.20}{\sqrt{E(\text{GeV})}} \oplus 0.01 \end{array}$
		rms ₉₀ /E _{jet} [%]	Total Other Resolution Leakag Confusion

$$\mathbf{E}_{\mathbf{JET}} = \mathbf{E}_{\mathbf{TRACK}} + \mathbf{E}_{\gamma} + \mathbf{E}_{n}$$

Component	Detector	Energy fraction	Energy resolution	Jet energy resolution
Charged particles (X^{\pm})	Tracker	$\sim 0.6 E_J$	_	-
Photons(γ)	ECAL	$\sim 0.3 E_J$	$0.03\sqrt{E_{\gamma}}$	$0.016\sqrt{E_J}$
Neutral Hadrons(h^0)	HCAL	$\sim 0.1 E_J$	$0.55\sqrt{E_{h^0}}$	$0.17\sqrt{E_J}$

Introduction

- Crystal ECAL:
 - Homogeneous BGO crystal.
 - Optimal energy resolution $\frac{3\%}{\sqrt{E}} \oplus \sim 1\%$
 - meet the requirement.
 - Long bar design
 - Less electronic channels.
 - Bar size: $1 \times 1 \times \sim 40 cm^3$.
 - Double-sided readout.
 - Crossed arrangement in adjacent layer.
 - Tower: $\sim 40 \times \sim 40 \times 28 cm^3$

Introduction

- Recognizing individual cluster in ECAL, associate the energy deposits with correct particles.
- Larger X_0 and R_M & better σ_E of crystal, a feasibility study of ECAL reconstruction using both position and energy & time measurements.
- A distinct "core" of energy deposition could be utilized for cluster recognition in ECAL.

"Seed": Local Maximum

- In each layer / 1D reconstruction: local maximum and "seed" candidates
 - Real: core of energy deposition → real cluster (this talk)
 - Fake: fluctuation → fake cluster (next to do)
- - Reduce the negative effects due to wider longitudinal and lateral developments of cluster

weident particle

Principle of Hough Transformation

- A feature extraction method for detecting simple shapes (e.g. lines) in an image.
- For straight lines:
 - $\rho = x \cos \alpha + y \sin \alpha$
 - Each point (x, y) in image space is transformed to a curve in Hough space.
 - If several points (x_i, y_i) are collinear, their curves intersect at a point (α, ρ) in Hough space.
 - α and ρ are parameters of the straight line that pass through these points (x, y)

Hough transformation with local maxima

Transform each local maximum to a curve.

 If local maxima are not perfectly collinear, their curves do not intersect at a point.

$1 \times 1 cm^2$ Granularity Hough transformation

- $1 \times 1 cm^2$ cross section of long crystal bar could not be regarded as point
 - $0 < \alpha < \frac{\pi}{2}$: $(x_r, y_u) \rightarrow \rho_{ur} = x_r \cos \alpha + y_u \sin \alpha$ • $0 < \alpha < \frac{\pi}{2}$: $(x_l, y_d) \rightarrow \rho_{dl} = x_l \cos \alpha + y_d \sin \alpha$ • $\frac{\pi}{2} < \alpha < \pi$: $(x_l, y_u) \rightarrow \rho_{ul} = x_l \cos \alpha + y_u \sin \alpha$ • $\frac{\pi}{2} < \alpha < \pi$: $(x_r, y_d) \rightarrow \rho_{dr} = x_r \cos \alpha + y_d \sin \alpha$

Hough space

Each crystal in image space is transformed to a band in Hough space

-100

-200

1950

Image Space

2000

2050

v/mm

Shower Finding in Hough Space

- In Hough space, "votes" are collected in the accumulated bands representing local maxima.
- Each point/peak (overlap region of band) in Hough space is chosen as a cluster candidate.
- Center (α, ρ) estimation predicts the "core"/axis of a cluster.

Preliminary Result of Performance

Energy of cluster $\uparrow \rightarrow$

Energy fluctuation # fake local maximum ↑

➔ # fake cluster

Preliminary Result of Performance

- A significant impact on the number of clusters for photons, especially for photons with high energy
- Number of clusters for μ independent with energy or polar angle

Validation using MC Truth

- Multiple clusters are found in one EM cluster, most of them are fake clusters.
- Using MC truth information to validate whether the axis of the real EM cluster is founded

$$\frac{\chi^2}{N} = \frac{1}{N} \sum_{i=1}^{N} (y_i - g(x_i))^2$$

where N: number of hits of a track,

 y_i : position of a hit,

 $g(x_i)$: extrapolated position with MC truth,

Validation using MC Truth

Validation using MC Truth

1.02

efficiency 0.98 0.96

0.92

0.9

0.8

0.6

0.4

0.2

0

rate

1

photon

10 E/GeV

 $\theta = 90^{\circ}$

- Clusters with $\frac{\chi^2}{N} < 200$ are treated as real EM cluster.
- Despite the number of fake clusters, the real cluster could be found with an efficiency close to 100%

N _1880

-1900

E/Ge/

Summary

- Wider profile of showers in crystal raises the difficulty to separate energy deposits from different particles.
- A fresh approach of Local Maximum + Hough Transformation is applied in cluster finding, and high efficiency of correct EM clusters finding is achieved in a wide range of energy and polar angle.
- Number of fake clusters raises with increase of cluster's energy, precise Energy & Time constrains are expected to reduce the contamination caused by the fluctuation.

Thank you!

Backup

Hough transformation

- For each hit(local maximum), doing Hough transformation with
 - up-right & down-left points when $0 < \alpha < \frac{\pi}{2}$
 - up-left & down-right points when $\frac{\pi}{2} < \alpha < \pi$

Preliminary Result of Performance

- For photons, almost all shower core will be recognized
 - Due to the fluctuation of local maximums, most EM shower will find more than one tracks

• For μ , over 90% events will find one track

- 0 track

1 track

>1 track

Hough transformation

- In xz-plane, doing Hough transformation directly with the 4 points of each hit
 - $(x_r, y_u) \rightarrow \rho_{ur} = x_r \cos \alpha + y_u \sin \alpha$, $0 < \alpha < \frac{\pi}{2}$
 - $(x_l, y_d) \rightarrow \rho_{dl} = x_l \cos \alpha + y_d \sin \alpha$, $0 < \alpha < \frac{\pi}{2}$
 - $(x_l, y_u) \rightarrow \rho_{ul} = x_l \cos \alpha + y_u \sin \alpha$, $\frac{\pi}{2} < \alpha < \pi$
 - $(x_r, y_d) \rightarrow \rho_{dr} = x_r \cos \alpha + y_d \sin \alpha$, $\frac{\pi}{2} < \alpha < \pi$

$$\rho_{ur} = y_u = \rho_{ul}, \quad \rho_{dl} = y_d = \rho_{dr}$$

• The two up curves and down curves are continuous at $\alpha = \frac{\pi}{2}$

Distribution of χ^2/N

Distribution of χ^2/N

Distribution of χ^2/N

