

Institute of High Energy Physics Chinese Academy of Sciences

#### **Combined measurement of Higgs properties at CMS**



Jin Wang<sup>1</sup>

On behalf of the CMS Collaboration

1. Institute of High Energy Physics, CAS

8<sup>th</sup> August 2022



## Introduction



#### A great success of SM: the discovery of Higgs boson in 2012



- Many important questions remain unanswered:
  - neutrino mass, hierarchy problem, matter antimatter asymmetry, the nature of dark matter and dark energy etc.
- Higgs physics could be the key to answer these questions

# **CMS in LHC**



Large Hadron Collider (LHC) : Largest accelerator and currently the only place to study the Higgs boson CMS: General purpose detectors in LHC with Higgs physics as one of the main goals



## Higgs combination in LHC Run 2

5



- Precise measurements of the main H production cross section and decay branching ratios
  - Test compatibility with SM
- Measurement of H coupling to fermions and vector bosons
  - Probe anomalies from BSM contributions
- Probe properties of the H potential from H selfcoupling

nature

Explore content v About the journal v Publish with us v

nature > articles > article

Article | Open Access | Published: 04 July 2022

#### A portrait of the Higgs boson by the CMS experiment ten years after the discovery

Nature article

#### The CMS Collaboration

<u>Nature</u> 607, 60–68 (2022) | <u>Cite this article</u> 10k Accesses | 2 Citations | 401 Altmetric | <u>Metrics</u>

#### Analyses included in the combination

| Analyses                               | Lumi (fb-1)                    | ggH | qqH | VH | ttH and tH |
|----------------------------------------|--------------------------------|-----|-----|----|------------|
| <u>Η(</u> <u>γ</u> <u>γ</u> <u>)</u>   | 138                            | Х   | Х   | Х  | Х          |
| <u>H(ZZ)</u>                           | 138                            | Х   | Х   | Х  | Х          |
| <u>H(WW)</u>                           | 138                            | Х   | Х   | Х  | Х          |
| <u>H(Zɣ)</u>                           | 138                            | Х   | Х   |    |            |
| H(bb)                                  | <u>36(ttH) 77(VH) 138(ggH)</u> | Х   | Х   | Х  | Х          |
| <u>Η(ττ)</u>                           | 138                            | Х   | Х   | Х  | Х          |
| <u>ttH multilepton(ττ, WW, and ZZ)</u> | 138                            |     |     |    | Х          |
| <u>Η(μμ)</u>                           | 138                            | Х   | Х   |    | Х          |
| <u>H(invisible)</u>                    | 138                            | Х   | Х   | Х  |            |

- Main H production and decay channels covered
- More channels and additional interpretation to be expected in the near future

## Higgs production signal strength since discovery

#### 7

#### <u>Higgs discovery</u>

- Data: up to 5.1 fb-1 at 7 TeV and 5.3 fb-1 at 8 TeV
- $\mu = 0.87 \pm 0.23$  [dominated by statistic uncertainty]

$$\mu = \sigma_{obs.} / \sigma_{SM}$$

- Run 1 Higgs combination
  - Data: up to 5.1 fb-1 at 7 TeV and 19.7 fb-1 at 8 TeV
  - $\mu = 1.00 \pm 0.13$  [+0.08/-0.07 (theory)  $\pm 0.07$  (exp.)  $\pm 0.09$  (stat.)]
- Run 2 Higgs combination
  - Data: up to 138 fb-1 at 13 TeV
  - μ = 1.002 ± 0.057 [± 0.036 (theory) ± 0.033 (exp.) ± 0.029 (stat.)]
- Systematics uncertainties crucial for H measurements today and even more in future
  - Reduce experimental uncertainties with improved or new approaches
  - Need of more precise theory predictions

#### Test XS and BR compatibility with the SM



- Good compatibility for main H production XS & decay BR
- > Intriguing excesses in  $\mu_{tH}$  and in  $\mu_{Z_{y}}$  → among CMS priorities in Run 3

中国物理学会高能物理分会

## H couplings to fermions and vector bosons

 Coupling modifiers k<sub>i</sub> to quantify couplings deviations from SM predictions



➤ Good compatibility with SM

9

• Precision of ~3% on vector boson and of 5-20% on fermion coupl.

中国物理学会高能物理分会

8<sup>th</sup> August 2022

## H couplings with different assumptions

# Measurement assuming effective couplings for ggH, Hyy, and HZy



## Assuming also H decays to invisible(MET) & undetectable



Both invisible and undetectable BR's compatible with zero

中国物理学会高能物理分会

#### Higgs self-coupling measurement

- Higgs self-coupling crucial for understanding the Higgs field potential
  - Understand the electroweak symmetry breaking mechanism





- Higgs self-coupling with H and HH in CMS
  - Measure coupling modifiers  $k_{\lambda}$

•  $k_{\lambda} = \lambda / \lambda_{SM}$ 

- Indirect constraints from H measurement
- Direct probes from HH measurements (<u>Talk by Chu Wang</u>)

## Constraints on the H self-coupling

•  $k_{\lambda}$ -dependent NLO electroweak corrections to H XS and BR

 $k_{\lambda}$  measurement from HH vs from single-H

Examples of  $k_{\lambda}$ -dependent diagrams for single-H prod. mechanisms and H $\rightarrow$ VV decay



- > HH and single-H have comparable sensitivities to  $k_{\lambda}$
- First CMS measurement from single-H considering differential effects

#### Higgs property measurement towards HL-LHC



At HL-LHC high precision tests of the SM

 Precision below 5% for all the considered couplings

# Potential for more extensive tests

- $\circ~$  H-HH comb including k\_{\_{\!\!\lambda}} in the fit
- EFT interpretations

#### Summary

- Higgs combination with full Run 2 data at CMS
  - Provides extensive tests of the SM and probes potential BSM effects
  - Higgs production cross sections and branching ratios, H couplings measurements
    - Systematics start to dominant the uncertainties
    - Overall observed good compatibility with SM
  - Higgs self-coupling measurement

14

- First measurement of  $k_{\lambda}$  from single-H taking into account differential XS at CMS
- Significant improvement on precisions achieved in Run 2 with respect to the Higgs discovery and early analyses
- Stay tuned for more exciting results with full Run 2 data and Run 3!