

Measurement of the Higgs boson in decays to bosons using the ATLAS detector

Dongshuo Du

University of Science and Technology of China 2022.08.09

中国物理学会高能物理分会第十一届全国会员代表大会暨学术年会 辽宁师范大学, 2022/08/08 -2022/08/11

Outline

>Overview of Higgs physics in diboson final states

≻Higgs boson cross sections measurement

- Measurement of Simplified Template Cross Section (STXS) in $H \rightarrow WW^*$, $H \rightarrow ZZ^*$ and $H \rightarrow \gamma\gamma$ decay channels
- Fiducial inclusive and differential cross-section measurements in $H \rightarrow ZZ^*$ and $H \rightarrow \gamma\gamma$ decay channels

➢Summary

Higgs Physics In Diboson Final States

- → The most prolific decay: $H \rightarrow bb$ (58%), very hard to observe
- ➤ The branching ratios (BR) of H → WW*(→lvlv) / $\gamma\gamma$ / ZZ*(→41) are 1.0%, 0.23% and 0.012%, respectively
- The final states (e, μ, γ) are very sensitive & leave a clean signature in the ATLAS detector
 - ► H→ZZ*→4l and H→γγ : the most sensitive channels for observation
 ► H→ZZ*→4l, S/B > 2
 ► H→γγ, S/B ~5%
 - → H→ WW*→lvlv (high yield with fair S/B)
 - Larger branching ratio Clean signature
 - High background

Powerful tool for measuring the Higgs properties

Simplified Template Cross Section (STXS)

- The aim with STXS method:
 - Improve sensitivity of measurements
 - Reduce their dependence on the theory
 - Isolation of possible BSM effects
- STXS framework provides different stages (e.g. stage 0, stage 1, stage 1.2) with increasingly fine granularity, <u>more details</u>
- Categorizing events into bins of key (truth) variables (p_T^H, N_{jets}, m_{jj}) in different production modes (ggH, qqH, VH and ttH)
- STXS well-suited to combine different decay channels
- Higgs boson properties measured with 139 fb⁻¹
 (vs = 13 TeV) for Higgs boson rapidity |y_H| < 2.5

H→WW*: Analysis Strategy

- Signal: different flavour ($e\mu+\mu e$) opposite charge leptons + MET
- Events split in 4 analysis categories based on N_{jets}^(*)
 - $ggF: N_{jets} = 0, 1, \ge 2$, cut based
 - m_T used as discriminant variable
 - VBF: $N_{iets} \ge 2$, "deep" neural network (DNN) based
 - DNN used as discriminant variable
- Main background:
 - Non-resonant qqWW, top and $Z \rightarrow \tau \tau$
 - ggF: qqWW, top and $Z \rightarrow \tau \tau$ normalized by control regions (CR)
 - VBF: top and $Z \rightarrow \tau \tau$ normalized by CRs
 - Background with mis-identified leptons estimated by data-driven fake factor method
- (*) Full event selection in the backup

Submitted to PRD

 $m_T = \sqrt{(E_T^{\ell \ell} + E_T^{\text{miss}})^2 - |\mathbf{p}_T^{\ell \ell} + E_T^{\text{miss}}|^2}, \ E_T^{\ell \ell} = \sqrt{|\mathbf{p}_T^{\ell \ell}|^2 + m_{\ell \ell}^2}$

中国物理学会高能物理分会第十一届全国会

员代表大会暨学术年会;辽宁师范大学

4

- > This analysis based on the reduced stage 1.2 category to ensure sensitivity for all measurements.
- CRs split similar to SRs where statistics allow

中

$$p_{\mathsf{T}}^{H}$$
 = $| \boldsymbol{p}_{\mathsf{T}}^{\ell\ell} + \boldsymbol{E}_{\mathsf{T}}^{\mathsf{miss}} |$
国物理学会高能物理分会第十一届全国会
员代表大会暨学术年会;辽宁师范大学

Dongshuo Du (USTC)

$H \rightarrow WW^*$: Results

Submitted to PRD

STXS results

$\sigma_{ m ggF}\cdot \mathcal{B}_{H ightarrow WW^*}$	=	$12.0 \pm 1.4 \text{ pb}$
	=	12.0 ± 0.6 (stat.) ^{+0.9} _{-0.8} (exp. syst.) ^{+0.6} _{-0.5} (sig. theo.) ± 0.8 (bkg. theo.) pb
$\sigma_{\mathrm{VBF}} \cdot \mathcal{B}_{H \to WW^*}$	=	$0.75 \stackrel{+0.19}{_{-0.16}} \text{pb}$
		0.75 ± 0.11 (dot) ± 0.07 (correspondent) ± 0.12 (dot) ± 0.07 (have the s.)

= 0.75 ± 0.11 (stat.) $^{+0.07}_{-0.06}$ (exp. syst.) $^{+0.12}_{-0.08}$ (sig. theo.) $^{+0.07}_{-0.06}$ (bkg. theo.) pb,

 \blacktriangleright Compatible with SM predictions within 1 σ

- Extracted by profile likelihood fit: 17 SRs (m_T/DNN) + 27 CRs
- ggH uncertainties limited by both stat. + syst. uncertainty
- qqH uncertainties limited by statistical uncertainty at high m_{ii} / p_T^H

$H \rightarrow ZZ^* \rightarrow 4\ell$: Four-lepton Invariant Mass Distribution

Analysis features:

- > Small branching fraction (0.0124% at $m_H = 125 \text{ GeV}$)
- Best final S/B ratio, better than 2:1
- **Clean signature with fully reconstructed final state**

Cross sections extracted by fit to the NN observable

 \blacktriangleright good mass resolution = 1-2%

Signal: 4 leptons (4e, 4μ , $2e2\mu$ and $2\mu 2e$)

Backgrounds:

- > Dominant background: Non-resonant $ZZ^*/Z\gamma^*$, estimated from data sideband (105–160 GeV)
- \blacktriangleright Reducible background with non-prompt leptons for Z+jets, ttbar constrained by dedicated CR.

中国物理学会高能物理分会第十

员代表大会暨学术年会;辽宁师范大学

$H \rightarrow ZZ^* \rightarrow 4\ell: STXS$

Eur. Phys. J. C 80, 957 (2020).

- The inclusive H→ZZ* production cross-section for |y_H| < 2.5: 1.34 ± 0.12 pb
- Good agreement with the SM predictions:
 1.33 ± 0.08 pb

Reduced Stage 1.1

- > 12 pois measured simultaneous
 - ggF/VBF: 7/3 categories separately
 - VH-lep/ttH: One bin from each mode
- Due to finer categorization, results are statistically limited.

$H \rightarrow \gamma \gamma$: Diphoton Invariant Mass Distribution

Analysis features:

- ➢ Fairly high branching fraction wrt H→ZZ*→4ℓ:
 ~20 times larger
- Excellent performance of photon reconstruction and identification
- Final states are fully reconstructable
- Good mass resolution = 1-2%

Signal: diphoton

Backgrounds:

SM diphoton production (>75%) or γ+jets (~20%), jet+jets (<5%) estimated from data sideband</p>

Submitted to JHEP

Signal + background model fit for all categories with $m_{\gamma\gamma}$, and the residual plot after subtracting the backgrounds

Process	Value	Unce	ertainty	SM pred.	
$(y_H <2.5)$	[fb]	Total	Stat.	Syst.	[fb]
ggF+bbH	106	+10 -10	+8 -8	+6 -6	102^{+6}_{-6}
VBF	9.5	+2.2 -1.9	+1.5 -1.4	+1.7 -1.4	$7.9^{+0.2}_{-0.2}$
WH	4.2	+1.5 -1.4	+1.5 -1.4	+0.4 -0.2	$2.8^{+0.1}_{-0.1}$
ZH	-0.4	+1.1 -1.0	$^{+1.1}_{-1.0}$	+0.2 -0.3	$1.8^{+0.1}_{-0.1}$
tĪH	1.0	+0.4 -0.3	+0.3 -0.3	+0.1 -0.1	$1.1^{+0.1}_{-0.1}$
tH	0.5	+0.8 -0.6	+0.7 -0.6	+0.3 -0.2	$0.19^{+0.01}_{-0.02}$

Submitted to JHEP

- The contribution from the *bbH* process is included in the ggF
- Good agreement with SM prediction.

 $\succ \sigma_{tH}^{Obs\,(exp)}$ < 10 (6.8) σ_{tH}^{SM} at 95% CL

• Unique sensitivity to the sign of the topquark Yukawa coupling

The overall Higgs boson signal strength:

 $\mu = 1.04^{+0.10}_{-0.09} = 1.04 \pm 0.06 \text{ (stat.)}^{+0.06}_{-0.05} \text{ (theory syst.)} ^{+0.05}_{-0.04} \text{ (exp. syst.)}.$

Good agreement with SM prediction

$H \rightarrow \gamma \gamma$: STXS

Submitted to JHEP

- More statistics with Full Run2 dataset, finer binning especially for non-ggH production mode.
- Cross-sections of 28 STXS regions are measured
 - First to measure ttH differentially
 - Access to the very high p_T^H region
 - Access to tH production mode (tHqb and tHW)
- Very good agreement with SM prediction with a p-value of 93%.
- Due to finer categorization, measurements are statistically limited.

Differential and Fiducial Cross Sections

- Fiducial region: The fiducial selection closely match the detector level
 - Minimise model-dependent acceptance extrapolations
 - Allow for easy comparison of physics models today and in the future

$$\sigma^{\text{fid}} = \sigma^{\text{total}} \times \mathbf{A} \times BR = \frac{N_{\text{s}}}{C \times L_{\text{int}}}$$

 N_s : number of observed signal events, $C = \frac{N_{Rec}}{N_{Fid}}$: the correction factor for detector efficiency and resolution effect, L_{int} : Integrated luminosity

- ➢ Inclusive fiducial cross-section: No attempt to separate Higgs production/decay modes
 → compare with best available predictions in the detector phase space
- Differential cross-section: Different differential cross-section measurement sensitive to the different physics:
 - The Higgs p_T distribution can test couplings to b and c quarks, and high p_T can tests new physics.
 - The jet multiplicity is sensitive to different production mechanisms and the theoretical modelling of high-quark and gluon emission.

Combination needs extrapolation to the full phase space due to the fiducial regions are different (acceptance + BR)

- \blacktriangleright H \rightarrow ZZ* \rightarrow 4ℓ decay mode provides excellent resolution for Higgs kinematic variables
- \blacktriangleright Fitting 4 ℓ distribution in each final state (right) or differential **bin** (bottom) to extract the measured cross section

Eur. Phys. J. C 80, 942 (2020)

Inclusive fiducial cross section:

 $\sigma_{\rm fid} = 3.28 \pm 0.30 \, (\text{stat.}) \pm 0.11 \, (\text{syst.}) \, \text{fb}$ $\sigma_{\mathrm{fid}_{,SM}} = 3.41 \pm 0.18 \; \mathrm{fb}$

10% level precision and Good agreement with LHCXSWG prediction

Differential cross section with 20 observables:

- 9 Higgs kinematic-related variables: like p_τ^H
- 7 Jet-related variables: like N_{iets}
- 4 Higgs boson and jet-related variables

Measured cross sections in good agreement with SM predictions within uncertainties

Limited by statistical uncertainties

= 1

= 2

MG5 FxFx K = 1.47. +XH

-value NNLOJET = 89%

NNLO IET $\nu = 1 - \dot{\chi}$

$H \rightarrow \gamma \gamma$: Inclusive and Differential Cross Section

- Excellent performance of photon reconstruction and identification

 → good resolution for Higgs variables
- > The H $\rightarrow \gamma \gamma$ signal yields are extracted from fits to the diphoton invariant mass spectrum

Inclusive fiducial cross section:

 $\sigma_{\rm fid} = 67 \pm 6 \, {\rm fb}$

 $\sigma_{\mathrm{fid}_{,SM}} = 64.2 \pm 3.4 \mathrm{~fb}$

The measurement has precision at 9% level

Differential cross-section still limited by statistical uncertainties

Measured cross sections in good agreement with SM predictions within uncertainties

Accepted by JHEP

More details in Fabio's talk

Combination: $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ$

- > Combination between $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ$ can improve the measurement precision.
 - Based on the individual channel
 - The uncertainties from same source are correlated
 - Both channels are extrapolated to the full phase space to do the combination
- The Combined differential result still dominated by the statistical uncertainty

p_T^H precision: 20-30% up to 300 GeV ~60% 300-650 GeV >100% 650-1200 GeV

With more date, the precision

can be further improved

The differential XS distribution of p_T^H can used to indirect constrain the Yukawa coupling of charm and bottom quark (k_c and k_b).

More details in Tao's talk

Measured total XS: $55.5^{+4.0}_{-3.8}$ pb SM prediction: 55.6 ± 2.8 pb

Summary

>H → ZZ*, H → γγ, H → WW* channels investigated with 139 fb⁻¹ of data collected with the ATLAS detector @13TeV

- Inclusive, STXS and differential cross section measurements are presented
- All the measurements are in agreement with the SM predictions
- The precision of the fiducial cross section measurement in both $H \rightarrow ZZ^*$ and $H \rightarrow \gamma\gamma$ channel about 10%.
- All the differential cross section measurement still dominant by the statistical uncertainty

> Run3 has just started with much more to come. Stay tuned!

Thank you for your attention

Back up

Higgs Physics In Diboson Final States

Production modes

Higgs decay to diboson

- > The most prolific decay: $H \rightarrow bb$ (58%), very hard to observe
- ➤ The branching ratios (BR) of $H \rightarrow WW^*(\rightarrow lvlv)$ /ZZ*(\rightarrow 41)/ $\gamma\gamma$ are 1.0%, 0.012% and 0.23%, respectively
- The final states (e, μ, γ) are very sensitive & leave a clean signature in the ATLAS detector

Higgs mass measurement

Submitted to Physics Letters B

First mass measurement of Higgs boson with HZZ channel by using Full Run2 data

 $m_H = 124.99 \pm 0.18$ (stat.) ± 0.04 (syst.) GeV.

- > m_H is extracted by performing a simultaneous fit to the four subchannels (4 μ , 2 $e2\mu$, 2 $\mu2e$, and 4e) in the m_{4e} range between 105 and 160 GeV.
- > The results are still limited by statistical uncertainty
- Run1+Run2 combined results with <u>new correlation</u> <u>scheme</u>(Systematic uncertainties largely reduced)

 $m_H = 124.94 \pm 0.17$ (stat.) ± 0.03 (syst.) GeV,

➤ The most precise measurement of m_H in the $H \rightarrow Z Z * \rightarrow 4\ell$ channel by the ATLAS Collaboration

More details in <u>Han Li's talk</u>

More about the Fiducial and differential cross sections measurement

Full phase space

Experimental

Fiducial region is defined to closely match to experimental acceptance

To obtain the data distributions in fiducial region, the response matrix R_{truth_reco} is used to accounting for the bin migrations

Main improvement for HWW analysis

Big picture:

- 1. Total integrated luminosity
- 2. Additional consider ggF 2jet analysis
- 3. STXS also measured in this analysis

More specific:

- <u>Ttbar nnlo reweighting</u> to correct the mismodeling of the leading-lepton P_T due to missing higher-order corrections
- ② B-tagging change from MV2C10 to DL1r
- ③ DNN to replace the BDT for VBF analysis
- ④ The central jet veto is applied for jets with pT > 30 GeV, compared to pT > 20 GeV used previously, reducing the theory modelling uncertainty

Dongshuo Du (USTC)

...

Main improvement for H yy

 \blacktriangleright New categorization; ~20% improvement in sensitivity.

Increased granularity; 28 STXS categories from 101 reconstruction categories

Categorization

The previous analyses performed such categorization sequentially, giving higher priority to production processes with lower cross sections, the new strategy considers all production processes simultaneously.

- 1. Signal multi-class BDT: splits signal into STXS regions, aiming to simultaneously reduce the uncertainties and correlations between the classes.
- 2. Background rejection binary BDT: in each of the signal multi-class BDT output classes a dedicated BDT is trained. This BDT aims to separate signal from the backgrounds.

Multi-class BDT: Training variables

Submitted to JHEP

 $\eta_{\gamma_1}, \eta_{\gamma_2}, p_{\mathrm{T}}^{\gamma\gamma}, y_{\gamma\gamma},$ $p_{T,ii}^{\dagger}, m_{jj}$, and $\Delta y, \Delta \phi, \Delta \eta$ between j_1 and j_2 , $p_{\mathrm{T},\gamma\gamma j_{1}}, m_{\gamma\gamma j_{1}}, p_{\mathrm{T},\gamma\gamma j_{1}}^{\dagger}, m_{\gamma\gamma j_{1}}$ $\Delta y, \Delta \phi$ between the $\gamma \gamma$ and jj systems, minimum ΔR between jets and photons, invariant mass of the system comprising all jets in the event, dilepton $p_{\rm T}$, di-*e* or di- μ invariant mass (leptons are required to be oppositely charged), $E_{\rm T}^{\rm miss}$, $p_{\rm T}$ and transverse mass of the lepton + $E_{\rm T}^{\rm miss}$ system, $p_{\rm T}, \eta, \phi$ of top-quark candidates, $m_{t_1 t_2}$ Number of jets[†], of central jets ($|\eta| < 2.5$)[†], of *b*-jets[†] and of leptons, $p_{\rm T}$ of the highest- $p_{\rm T}$ jet, scalar sum of the $p_{\rm T}$ of all jets, scalar sum of the transverse energies of all particles ($\sum E_T$), E_T^{miss} significance, $\left|E_{\rm T}^{\rm miss} - E_{\rm T}^{\rm miss}(\text{primary vertex with the highest } \sum p_{\rm T,track}^2)\right| > 30 \,{\rm GeV}$ Top reconstruction BDT of the top-quark candidates, $\Delta R(W, b)$ of t_2 . $\eta_{i_F}, m_{\gamma\gamma i_F}$ Average number of interactions per bunch crossing.

Binary BDT: Training variables

STXS classes	Variables	_
Individual STXS classes from $gg \rightarrow H$ $qq' \rightarrow Hqq'$ $qq \rightarrow H\ell\nu$ $pp \rightarrow H\ell\ell$ $pp \rightarrow H\nu\bar{\nu}$	All multiclass BDT variables, $p_{T}^{\gamma\gamma}$ projected to the thrust axis of the $\gamma\gamma$ system $(p_{Tt}^{\gamma\gamma})$, $\Delta\eta_{\gamma\gamma}, \eta^{Zepp} = \frac{\eta_{\gamma\gamma} - \eta_{jj}}{2},$ $\phi_{\gamma\gamma}^{*} = \tan\left(\frac{\pi - \Delta\phi_{\gamma\gamma} }{2}\right)\sqrt{1 - \tanh^{2}\left(\frac{\Delta\eta_{\gamma\gamma}}{2}\right)},$ $\cos \theta_{\gamma\gamma}^{*} = \left \frac{(E^{\gamma_{1}} + p_{z}^{\gamma_{1}}) \cdot (E^{\gamma_{2}} - p_{z}^{\gamma_{2}}) - (E^{\gamma_{1}} - p_{z}^{\gamma_{1}}) \cdot (E^{\gamma_{2}} + p_{z}^{\gamma_{2}})}{m_{\gamma\gamma} + \sqrt{m_{\gamma\gamma}^{2} + (p_{T}^{\gamma\gamma})^{2}}}\right $ Number of electrons and muons.	<u>nitted to JHEP</u>
all <i>t</i> t̄ <i>H</i> and <i>tHW</i> STXS classes combined	$p_{\rm T}, \eta, \phi \text{ of } \gamma_1 \text{ and } \gamma_2,$ $p_{\rm T}, \eta, \phi \text{ and } b$ -tagging scores of the six highest- $p_{\rm T}$ jets, $E_{\rm T}^{\rm miss}, E_{\rm T}^{\rm miss}$ significance, $E_{\rm T}^{\rm miss}$ azimuthal angle, Top reconstruction BDT scores of the top-quark candidates, $p_{\rm T}, \eta, \phi$ of the two highest- $p_{\rm T}$ leptons.	
tHqb	$p_{T}^{\gamma\gamma}/m_{\gamma\gamma}, \eta_{\gamma\gamma},$ $p_{T}, \text{ invariant mass, BDT score and } \Delta R(W, b) \text{ of } t_{1},$ $p_{T}, \eta \text{ of } t_{2},$ $p_{T}, \eta \text{ of } j_{F},$ Angular variables: $\Delta \eta_{\gamma\gamma t_{1}}, \Delta \theta_{\gamma\gamma t_{2}}, \Delta \theta_{t_{1}j_{F}}, \Delta \theta_{t_{2}j_{F}}, \Delta \theta_{\gamma\gamma j_{F}}$ Invariant mass variables: $m_{\gamma\gamma j_{F}}, m_{t_{1}j_{F}}, m_{t_{2}j_{F}}, m_{\gamma\gamma t_{1}}$ Number of jets with $p_{T} > 25 \text{ GeV}$, Number of <i>b</i> -jets with $p_{T} > 25 \text{ GeV}^{*};$ Number of leptons [*] , E_{T}^{miss} significance [*]	
Dongshuo Du (USTC)	中国物理学会高能物理分会第十一届全国会 员代表大会暨学术年会;辽宁师范大学	25

Main improvement for HZZ

Improved lepton isolation to mitigate the impact of pile-up

- Improved jet reconstruction using a particle flow algorithm
- Additional event categories for the classification of Higgs boson candidates
- New discriminants to enhance the sensitivity to distinguish the various production modes of the SM Higgs boson
- Use of data sidebands to constrain the dominant ZZ* background process

H→WW*: analysis

Category	$\int N_{\text{jet,}(p_{\text{T}}>30\text{ GeV})} = 0 \text{ ggF}$	$N_{\text{jet},(p_{\text{T}}>30 \text{ GeV})} = 1 \text{ ggF}$	$N_{\text{jet},(p_{\text{T}}>30 \text{ GeV})} \ge 2 \text{ ggF}$	$N_{\text{jet,}(p_{\text{T}}>30 \text{ GeV})} \ge 2 \text{ VBF}$						
	Two is	tons $(\ell = e, \mu)$ with opposite	e charge							
Preselection	$p_{\rm T}^{\rm lead} > 22 \text{ GeV}$, $p_{\rm T}^{\rm sublead} > 15 \text{ GeV}$									
rrescreetion		$m_{\ell\ell} >$	10 GeV							
		$p_{\rm T}^{\rm miss} > 20 { m GeV}$								
		$>_{20 \text{ GeV}} = 0$	Reconstructed with the							
Background rejection	$\Delta \phi_{\ell \ell, E_{\rm T}^{\rm miss}} > \pi/2$		$m_{\tau\tau} < m_Z - 25 \text{ GeV}$	collinear approximation method						
	$p_{\rm T}^{\ell\ell} > 30 { m GeV}$	$\max\left(m_{\rm T}^\ell\right) > 50~{\rm GeV}$								
		$m_{\ell\ell} < 55 { m ~GeV}$		jet lep						
		$\Delta \phi_{\ell\ell} < 1.8$		jeto ju						
$H \rightarrow WW^* \rightarrow e \nu \mu \nu$			fail central jet veto	lep						
topology			or	central jet veto						
			fail outside lepton veto	outside lepton veto						
			$ m_{jj} - 85 > 15 \text{ GeV}$	$m_{jj} > 120 \mathrm{GeV}$						
			or							
			$\Delta y_{jj} > 1.2$							
Discriminating fit variable		m_{T}		DNN						

Submitted to PRD

$H \rightarrow WW^*$: analysis

CR	$N_{\text{jet},(p_{\text{T}}>30 \text{ GeV})} = 0 \text{ ggF}$	$N_{\text{jet,}(p_{\text{T}}>30 \text{ GeV})} = 1 \text{ ggF}$	$N_{\text{jet},(p_{\text{T}}>30 \text{ GeV})} \ge 2 \text{ ggF}$	$N_{\text{jet},(p_{\text{T}}>30 \text{ GeV})} \ge 2 \text{ VBF}$
		$N_{b\text{-jet},(p_{\mathrm{T}}>20 \text{ GeV})} = 0$		
	$\Delta \phi_{\ell \ell, E_{\mathrm{T}}^{\mathrm{miss}}} > \pi/2$	$m_{\ell\ell} >$		
	$p_{\rm T}^{\ell\ell} > 30 { m ~GeV}$	$ m_{\tau\tau} - m_Z > 25 \text{ GeV}$	$m_{\tau\tau} < m_Z - 25 \text{ GeV}$	
$aa \rightarrow WW$	$55 < m_{\ell\ell} < 110 \text{ GeV}$	$\max\left(m_{\mathrm{T}}^{\ell}\right) > 50 \;\mathrm{GeV}$	$m_{\rm T2} > 165 { m ~GeV}$	
99 7 11 11	$\Delta \phi_{\ell\ell} < 2.6$		fail central jet veto	
			or fail outside lepton veto	
			$ m_{jj} - 85 > 15 \text{ GeV}$	
			or $\Delta y_{jj} > 1.2$	
	$N_{\rm transmission} > 0$	$N_{b\text{-jet},(p_{\mathrm{T}}>30 \mathrm{~GeV})} = 1$	$N_{\rm eff} = 0$	$N_{\rm H}$, α as σ τ = 1
	$1^{V}b$ -jet, (20< $p_{\rm T}$ <30 GeV) > 0	$N_{b-\text{jet},(20 < p_{\text{T}} < 30 \text{ GeV})} = 0$	$P_{b-jet,(p_T>20 \text{ GeV})} = 0$	$P_{\text{b-jet},(p_{\text{T}}>20 \text{ GeV})} = 1$
	$\Delta \phi_{\ell \ell, E_{\mathrm{T}}^{\mathrm{miss}}} > \pi/2$		$m_{\tau\tau} < m_Z - 25 \text{ GeV}$	
	$p_{\rm T}^{\ell\ell} > 30 { m GeV}$	$\max\left(m_{\mathrm{T}}^{\ell}\right) > 50 \;\mathrm{GeV}$	$m_{\ell\ell} > 80 \text{ GeV}$	
tī/Wt	$\Delta \phi_{\ell\ell} < 2.8$		$\Delta \phi_{\ell\ell} < 1.8$	
			$m_{\mathrm{T2}} < 165 \; \mathrm{GeV}$	
			fail central jet veto	central jet veto
			or fail outside lepton veto	outside lepton veto
			$ m_{jj} - 85 > 15 \text{ GeV}$	
			or $\Delta y_{jj} > 1.2$	
		N _{b-jet,(}	$p_{\rm T}>20~{\rm GeV})=0$	
	$m_{\ell\ell}$	< 80 GeV	$m_{\ell\ell} < 55 \text{ GeV}$	$m_{\ell\ell} < 70 \text{ GeV}$
	no $p_{\mathrm{T}}^{\mathrm{miss}}$ re	quirement		
Z/γ^*	$\Delta \phi_{\ell\ell} > 2.8$	$m_{\tau\tau} > m_{T}$	z – 25 GeV	$ m_{\tau\tau} - m_Z \le 25 \text{ GeV}$
2/1		$\max\left(m_{\mathrm{T}}^{\ell}\right) > 50 \;\mathrm{GeV}$	fail central jet veto	central jet veto
			or fail outside lepton veto	outside lepton veto
			$ m_{jj} - 85 > 15 \text{ GeV}$	
			or $\Delta y_{jj} > 1.2$	

Submitted to PRD

VBF ≥2 Jet: Deep Neural Network (DNN)

DNN inputs:

 $\Delta \phi_{\ell\ell}, m_{\ell\ell}, m_{\mathrm{T}}, \Delta y_{jj}, m_{jj}, p_{\mathrm{T}}^{\mathrm{tot}}, \eta_{\ell}^{\mathrm{centrality}}, m_{\ell 1j1}, m_{\ell 1j2}, m_{\ell 2j1}, m_{\ell 2j2}, p_{\mathrm{T}}^{\mathrm{jet_1}}, p_{\mathrm{T}}^{\mathrm{jet_2}}, p_{\mathrm{T}}^{\mathrm{jet_3}}, \text{ and MET significance}$

Training done after preselection, b veto && $m_{\tau\tau} < m_Z - 25 \text{ GeV}$

Training target: VBF VS all bkg(ggF, ttbar, ww*..)

Submitted to PRD

Two most powerful variables

中国物理学会高能物理分会第十一届全国会
员代表大会暨学术年会;辽宁师范大学

$H \rightarrow WW^*$: analysis

Submitted to PRD

$H \rightarrow WW^*$: Break down

Source	$\frac{\Delta\sigma_{\rm ggF+VBF}\cdot\mathcal{B}_{H\to WW^*}}{\sigma_{\rm ggF+VBF}\cdot\mathcal{B}_{H\to WW^*}} \left[\%\right]$	$\frac{\Delta \sigma_{\rm ggF} \cdot \mathcal{B}_{H \to WW^*}}{\sigma_{\rm ggF} \cdot \mathcal{B}_{H \to WW^*}} \left[\%\right]$	$\frac{\Delta \sigma_{\mathrm{VBF}} \cdot \mathcal{B}_{H \to WW^*}}{\sigma_{\mathrm{VBF}} \cdot \mathcal{B}_{H \to WW^*}} \left[\%\right]$
Data statistical uncertainties	4.6	5.1	15
Total systematic uncertainties	9.5	11	18
MC statistical uncertainties	3.0	3.8	4.9
Experimental uncertainties	5.2	6.3	6.7
Flavor tagging	2.3	2.7	1.0
Jet energy scale	0.9	1.1	3.7
Jet energy resolution	2.0	2.4	2.1
$E_{\mathrm{T}}^{\mathrm{miss}}$	0.7	2.2	4.9
Muons	1.8	2.1	0.8
Electrons	1.3	1.6	0.4
Fake factors	2.1	2.4	0.8
Pileup	2.4	2.5	1.3
Luminosity	2.1	2.0	2.2
Theoretical uncertainties	6.8	7.8	16
ggF	3.8	4.3	4.6
VBF	3.2	0.7	12
WW	3.5	4.2	5.5
Тор	2.9	3.8	6.4
Ζττ	1.8	2.3	1.0
Other VV	2.3	2.9	1.5
Other Higgs	0.9	0.4	0.4
Background normalizations	3.6	4.5	4.9
WW	2.2	2.8	0.6
Тор	1.9	2.3	3.4
Ζττ	2.7	3.1	3.4
Total	10	12	23

Submitted to PRD

Expected Composition

H→WW*: STXS

$\mathbf{CTVC} \mathbf{his} \left(- \mathbf{\mathcal{P}} \right)$	Value	Value Uncertainty [fb]					
STAS DIII $(U_l^* : \mathcal{D}_H \to WW^*)$	[ſb]	Total	Stat.	Exp. Syst.	Sig. Theo.	Bkg. Theo.	[ſb]
ggH -0j, low p_{T}^{H} $p_{T}^{H} < 200 \text{ GeV}$	7100	+950 -910	+480 -470	+570 -530	+320 -260	+490 -480	5870 ± 390
ggH -1 j , very low p_{T}^{H} $p_{T}^{H} < 60 \text{ GeV}$	1140	+800 -820	+420 -410	+380 -380	+80 -70	+570 -600	1400 ± 190
ggH -1 j , low p_{T}^{H} 60 $\leq p_{T}^{H} <$ 120 GeV	540	+470 -470	+310 -310	+230 -230	+42 -47	+270 -280	970 ± 150
ggH -1 j , med p_{T}^{H} 120 $\leq p_{T}^{H} < 200 \text{ GeV}$	230	+130 -120	+100 -100	+60 -60	$^{+10}_{-10}$	+50 -50	160± 30
$ggH-2j$, low p_T^H $p_T^H < 200 \text{ GeV}$	1610	+900 -890	+440 -440	+430 -420	+300 -150	+640 -650	1010 ± 220
ggH , high $p_{\rm T}^H$ $p_{\rm T}^H \ge 200 \text{ GeV}$	260	+100 -100	+80 -80	+40 -40	+40 -20	$^{+40}_{-40}$	122 ± 31
$ \begin{array}{l} \text{EW } qqH\text{-}2j, \text{low } m_{jj}\text{-}\text{low } p_{\mathrm{T}}^{H} \\ \text{350} \leq m_{jj} < 700 \ \text{GeV}, p_{\mathrm{T}}^{H} < 200 \ \text{GeV} \end{array} $	6	+63 -62	+46 -42	+31 -34	+11 -14	+24 -26	109 ± 7
$ \begin{array}{l} \mbox{EW } qqH\mbox{-}2j, \mbox{ med } m_{jj}\mbox{-}low \ p_{\rm T}^H \\ \mbox{700 } \leq m_{jj} < 1000 \ \mbox{GeV}, p_{\rm T}^H < 200 \ \mbox{GeV} \end{array} $	31	+35 -33	+30 -27	+15 -14	+8 -7	+11 -10	56± 4
EW qqH -2 j , high m_{jj} -low p_T^H 1000 $\leq m_{jj} < 1500$ GeV, $p_T^H < 200$ GeV	60	+26 -23	+23 -21	+7 -7	+9 -5	+5 -5	51 ± 4
$ \begin{array}{l} \mbox{EW } qqH\mbox{-}2j, \mbox{very high } m_{jj}\mbox{-}low \ p_{\rm T}^H \\ m_{jj} \geq 1500 \ {\rm GeV}, \ p_{\rm T}^H < 200 \ {\rm GeV} \end{array} $	57	+20 -18	+18 -17	+5 -5	+3 -3	$^{+4}_{-4}$	50 ± 4
EW qqH -2 j , high p_{T}^{H} $m_{jj} \ge 350$ GeV, $p_{T}^{H} \ge 200$ GeV	37	+16 -14	+14 -13	+4 -3	+4 -3	+3 -3	32 ± 1

Dongshuo Du (USTC)

Eur. Phys. J. C 80, 957 (2020).

Eur. Phys. J. C 80, 957 (2020).

Two types of NNs are used: feed-forward multilayer perceptron (MLP) and recurrent (RNN)

> The input variables used to train the MLP, and the two RNNs for the four leptons and the jets

Category	Processes	MLP	Lepton RNN	Jet RNN	Discriminant
$0j - p_{\rm T}^{4\ell}$ -Low $0j - p_{\rm T}^{4\ell}$ -Med	ggF, ZZ^*	$p_{\rm T}^{4\ell}, D_{ZZ^*}, m_{12}, m_{34},$ $ \cos \theta^* , \cos \theta_1, \phi_{ZZ}$	$p_{\mathrm{T}}^{\ell},\eta_{\ell}$	-	NN _{ggF}
$1j-p_{\mathrm{T}}^{4\ell}$ -Low	ggF, VBF, ZZ^*	$p_{ ext{T}}^{4\ell}, p_{ ext{T}}^{j}, \eta_{j}, \ \Delta R_{4\ell j}, D_{ZZ^{*}}$	$p_{\mathrm{T}}^{\ell},\eta_{\ell}$	-	NN_{VBF} for $NN_{ZZ} < 0.25$ NN_{ZZ} for $NN_{ZZ} > 0.25$
$1j - p_{\mathrm{T}}^{4\ell}$ -Med	ggF, VBF, ZZ*	$p_{\mathrm{T}}^{4\ell}, p_{\mathrm{T}}^{j}, \eta_{j}, E_{\mathrm{T}}^{\mathrm{miss}}, \ \Delta R_{4\ell j}, D_{ZZ^{*}}, \eta_{4\ell}$	$p_{\mathrm{T}}^{\ell},\eta_{\ell}$	-	NN_{VBF} for $NN_{ZZ} < 0.25$ NN_{ZZ} for $NN_{ZZ} > 0.25$
$1j$ - $p_{\mathrm{T}}^{4\ell}$ -High	ggF, VBF	$p_{\mathrm{T}}^{4\ell},p_{\mathrm{T}}^{j},\eta_{j},\ E_{\mathrm{T}}^{\mathrm{miss}},\Delta R_{4\ell j},\eta_{4\ell}$	$p_{\mathrm{T}}^{\ell},\eta_{\ell}$	-	NN _{VBF}
2 <i>j</i>	ggF, VBF, VH	$m_{jj}, p_{\mathrm{T}}^{4\ell j j}$	$p_{\mathrm{T}}^{\ell},\eta_{\ell}$	$p_{\mathrm{T}}^{j},\eta_{j}$	NN_{VBF} for $NN_{VH} < 0.2$ NN_{VH} for $NN_{VH} > 0.2$
2 <i>j</i> -BSM-like	ggF, VBF	$\eta_{ZZ}^{ m Zepp}, p_{ m T}^{4\ell j j}$	$p_{\mathrm{T}}^{\ell}, \eta_{\ell}$	$p_{\mathrm{T}}^{j},\eta_{j}$	NN _{VBF}
VH-Lep-enriched	VH, ttH	$N_{ m jets},N_{b ext{-jets},70\%},\ E_{ m T}^{ m miss},H_{ m T}$	p_{T}^ℓ	-	NN _{ttH}
ttH-Had-enriched	ggF, <i>ttH</i> , <i>tXX</i>	$p_{\mathrm{T}}^{4\ell}, m_{jj},$ $\Delta R_{4\ell j}, N_{b ext{-jets},70\%},$	$p_{\mathrm{T}}^{\ell},\eta_{\ell}$	$p_{\mathrm{T}}^{j},\eta_{j}$	NN_{ttH} for $NN_{tXX} < 0.4$ NN_{tXX} for $NN_{tXX} > 0.4$

会局能彻埋分会弗十

员代表大会暨学术年会;辽宁师范大学

	Exp	perimental	l uncertain	ties [%]	Theory uncertainties [%]						
Measurement	Lumi	<i>e</i> , μ,	Jets,	Reducible	Backg	ground	Signal				
	Lum.	pile-up	flav. tag	bkg	ZZ^*	tXX	PDF	QCD	Shower		
Inclusive cross-section											
	1.7	2.5	0.5	< 0.5	1	< 0.5	< 0.5	1	2		
	Production mode cross-sections										
ggF	1.7	2.5	1	< 0.5	1.5	< 0.5	0.5	1	2		
VBF	1.7	2	4	< 0.5	1.5	< 0.5	1	5	7		
VH	1.9	2	4	1	6	< 0.5	2	13.5	7.5		
ttH	1.7	2	6	< 0.5	1	0.5	0.5	12.5	4		
	Reduced Stage-1.1 production bin cross-sections										
$gg2H-0j-p_T^H$ -Low	1.7	3	1.5	0.5	6.5	< 0.5	< 0.5	1	1.5		
gg2H-0 <i>j-p</i> ^H _T -High	1.7	3	5	< 0.5	3	< 0.5	< 0.5	0.5	5.5		
$gg2H-1j-p_T^H$ -Low	1.7	2.5	12	0.5	7	< 0.5	< 0.5	1	6		
$gg2H-1j-p_T^H-Med$	1.7	3	7.5	< 0.5	1	< 0.5	< 0.5	1.5	5.5		
gg2H-1 <i>j-p</i> ^H _T -High	1.7	3	11	0.5	2	< 0.5	< 0.5	2	7.5		
gg2H-2 <i>j</i>	1.7	2.5	16.5	1	12.5	0.5	< 0.5	2.5	10.5		
$gg2H-p_T^H$ -High	1.7	1.5	3	0.5	3.5	< 0.5	< 0.5	2	3.5		
qq2Hqq-VH	1.8	4	17	1	4	1	0.5	5.5	8		
qq2Hqq-VBF	1.7	2	3.5	< 0.5	5	< 0.5	< 0.5	6	10.5		
qq2Hqq-BSM	1.7	2	4	< 0.5	2.5	< 0.5	< 0.5	3	8		
VH-Lep	1.8	2.5	2	1	2	0.5	< 0.5	1.5	3		
ttH	1.7	2.5	5	0.5	1	0.5	< 0.5	11	3		

Eur. Phys. J. C 80, 957 (2020).

The luminosity uncertainty, which is measured to be 1.7% and increases for the VH signal processes due to the simulation-based normalisation of the background.

$H \rightarrow \gamma \gamma$: 45 STXS analysis region

员代表大会暨学术年会: 辽宁师范大学

Submitted to JHEP

$H \rightarrow \gamma \gamma$:101 analysis categories

Catagory									
Category	Function	$N_{\rm data}$	$N_{\rm spur}$	Wald	Category	Function	Ndata	Nspur	Wald
$gg \rightarrow H$					\geq 2-jets, 350 \leq m_{jj} < 700 GeV, $p_{T}^{H} \geq$ 200 GeV, High-purity	Exp	18	0.189	\checkmark
0-jet, $p_T^H < 10 \text{GeV}$	ExpPoly2	191623	64.8		\geq 2-jets, 350 \leq m_{jj} < 700 GeV, $p_{T_{i}}^{H} \geq$ 200 GeV, Med-purity	Exp	84	0.513	\checkmark
0-jet, $p_T^H \ge 10 \text{ GeV}$	ExpPoly2	349266	50.4		\geq 2-jets, 350 \leq m_{jj} < 700 GeV, $p_{\rm T}^H \geq$ 200 GeV, Low-purity	Exp	595	0.721	
1-jet, $p_T^H < 60 \text{ GeV}$, High-purity	ExpPoly2	32644	20.7		\geq 2-jets, 700 \leq m_{jj} < 1000 GeV, $p_T^H \geq$ 200 GeV, High-purity	Exp	19	0.110	\checkmark
1-jet, $p_T^H < 60 \text{ GeV}$, Med-purity	ExpPoly2	85229	24.9		\geq 2-jets, 700 \leq m_{jj} < 1000 GeV, $p_T^H \geq$ 200 GeV, Med-purity	Exp	411	0.193	
1-jet, $60 \le p_T^H < 120 \text{ GeV}$, High-purity	Exp	26236	23.7		\geq 2-jets, $m_{jj} \geq$ 1000 GeV, $p_T^H \geq$ 200 GeV, High-purity	Exp	23	1.30	\checkmark
1-jet, $60 \le p_T^H < 120 \text{ GeV}$, Med-purity	ExpPoly2	56669	21.3		≥ 2 -jets, $m_{jj} \geq 1000 \text{ GeV}, p_T^H \geq 200 \text{ GeV}, \text{ Med-purity}$	Exp	56	0.329	\checkmark
1-jet, $120 \le p_T^H < 200 \text{ GeV}$, High-purity	ExpPoly2	1570	1.48		$aa \rightarrow H\ell y$				
1-jet, $120 \le p_T^H < 200 \text{ GeV}$, Med-purity	ExpPoly2	6163	5.33						
\geq 2-jets, m_{jj} < 350 GeV, p_T^H < 60 GeV, High-purity	ExpPoly2	8513	1.51		$0 \le p_T^v < 75$ GeV, High-purity	Exp	40	0.277	
\geq 2-jets, m_{jj} < 350 GeV, p_T^H < 60 GeV, Med-purity	ExpPoly2	31163	13.6		$0 \le p_T^{\nu} < 75 \text{ GeV}, \text{ Med-purity}$	Exp	158	0.609	
\geq 2-jets, m_{jj} < 350 GeV, p_T^H < 60 GeV, Low-purity	ExpPoly2	120357	15.7		$75 \le p_{\rm T}^{\rm v} < 150 {\rm GeV}$, High-purity	Exp	15	0.069	
\geq 2-jets, m_{jj} < 350 GeV, 60 $\leq p_T^H$ < 120 GeV, High-purity	ExpPoly2	7582	2.26		$75 \le p_{\rm T}^{\nu} < 150 {\rm GeV}$, Med-purity	Exp	104	0.255	
\geq 2-jets, m_{jj} < 350 GeV, 60 $\leq p_T^H$ < 120 GeV, Med-purity	ExpPoly2	48362	6.21		$150 \le p_T^{\nu} < 250 \text{GeV}$, High-purity	Exp	17	0.128	\checkmark
\geq 2-jets, m_{jj} < 350 GeV, 120 $\leq p_T^H$ < 200 GeV, High-purity	ExpPoly2	728	0.004		$150 \le p_T^V < 250 \text{GeV}$, Med-purity	Exp	21	0.150	
\geq 2-jets, m_{jj} < 350 GeV, 120 $\leq p_T^H$ < 200 GeV, Med-purity	PowerLaw	3007	0.983		$p_{T}^{V} \ge 250 \text{ GeV}, \text{ High-purity}$	Exp	16	0.237	\checkmark
\geq 2-jets, 350 \leq m_{11} < 700 GeV, p_T^H < 200 GeV, High-purity	Exp	432	0.487		$p_{\rm T}^V \ge 250 {\rm GeV}$, Med-purity	Exp	27	0.054	\checkmark
\geq 2-jets, 350 \leq m_{jj} < 700 GeV, p_T^H < 200 GeV, Med-purity	ExpPoly2	3084	1.33		$pp \rightarrow H\ell\ell$				
\geq 2-jets, 350 \leq m_{jj} < 700 GeV, p_T^H < 200 GeV, Low-purity	Exp	7999	5.78						
\geq 2-jets, 700 \leq m_{jj} < 1000 GeV, p_T^H < 200 GeV, High-purity	Exp	302	0.560		$0 \le p_T^* < 75$ GeV, High-purity	Exp	12	0.027	
\geq 2-jets, 700 \leq m_{jj} < 1000 GeV, p_T^H < 200 GeV, Med-purity	Exp	1033	1.44		$0 \le p_T^* < 75 \text{ GeV}, \text{ Med-purity}$	PowerLaw	1620	2.28	
\geq 2-jets, 700 \leq m_{jj} < 1000 GeV, p_T^H < 200 GeV, Low-purity	Exp	3187	4.32		$75 \le p_{\rm T}^{\rm v} < 150 {\rm GeV}$, High-purity	Exp	13	0.015	
\geq 2-jets, $m_{jj} \geq$ 1000 GeV, $p_T^H <$ 200 GeV, High-purity	Exp	113	0.192		$75 \le p_{\rm T}^{\nu} < 150 {\rm GeV}, {\rm Med}$ -purity	Exp	18	0.016	
\geq 2-jets, $m_{jj} \geq$ 1000 GeV, $p_T^H <$ 200 GeV, Med-purity	Exp	332	0.804		$150 \le p_{\rm T}^{\nu} < 250 {\rm GeV}$, High-purity	Exp	14	0.059	\checkmark
\geq 2-jets, $m_{jj} \geq$ 1000 GeV, $p_T^H <$ 200 GeV, Low-purity	PowerLaw	1020	1.09		$150 \le p_T^{\nu} < 250 \text{GeV}$, Med-purity	Exp	136	0.194	
$200 \le p_T^H < 300 \text{ GeV}, \text{ High-purity}$	Exp	420	1.68		$p_{\rm T}^{\rm v} \ge 250 {\rm GeV}$	Exp	14	0.311	~
$200 \le p_T^H < 300 \text{ GeV}, \text{ Med-purity}$	Exp	2296	0.714		$pp \rightarrow H \nu \bar{\nu}$				
$300 \le p_T^H < 450 \text{ GeV}$, High-purity	Exp	25	0.407	\checkmark	$0 \leq n^V \leq 75 \text{ GeV}$ High pupity	Ewn	1174	12.2	
$300 \le p_T^H < 450 \text{ GeV}, \text{ Med-purity}$	Exp	186	0.259		$0 \le p_T < 75 \text{ GeV}$, High-purity	Exp	6907	12.5	~
$300 \le p_T^H < 450 \text{ GeV}$, Low-purity	Exp	422	0.121		$0 \le p_{\rm T}^{\rm V} < 75 {\rm GeV}$, Med-purity	Exp	1909/	4.15	
$450 \le p_T^H < 650 \text{ GeV}$, High-purity	Exp	15	0.138	\checkmark	$0 \le p_{\rm T} < 75 {\rm GeV}$, Low-purity	Exproiys	16064	9.95	/
$450 \le p_T^H < 650 \text{ GeV}, \text{ Med-purity}$	Exp	25	0.391	\checkmark	$75 \le p_{\rm T} < 150 {\rm GeV}$, High-purity	Exp	10	1.20	× ,
$450 \le p_{\pi}^H < 650 \text{ GeV}$, Low-purity	Exp	109	0.031		$75 \le p_{\rm T}^- < 150 {\rm GeV}$, Med-purity	Exp	124	1.50	~
			0 440	1	$15 \le p_{\rm T}^2 < 150 {\rm Gev}$, Low-purity	Exp	2019	1.96	,
$p_{\rm T}^H \ge 650 {\rm GeV}$	Exp	14	0.448				16		~
$p_{\rm T}^H \ge 650 {\rm GeV}$ $aa' \to Haa'$	Ехр	14	0.448		$150 \le p_V^V < 250 \text{ GeV}$, High-purity	Exp	16	0.121	/
$p_{\rm T}^{H} \ge 650 {\rm GeV}$ $qq' \to Hqq'$	Exp	14	0.448		$150 \le p_T^V < 250 \text{ GeV}, \text{ High-purity}$ $150 \le p_T^V < 250 \text{ GeV}, \text{ Med-purity}$	Exp Exp	16 17	0.121	1
$p_T^H \ge 650 \text{ GeV}$ $qq' \to Hqq'$ 0-jet, High-purity	Exp	14	0.448		$150 \le p_T^V < 250 \text{ GeV}$, High-purity $150 \le p_T^V < 250 \text{ GeV}$, Med-purity $150 \le p_T^V < 250 \text{ GeV}$, Low-purity $V \le 250 \text{ GeV}$, Low-purity	Exp Exp Exp	16 17 87	0.121	√ √
$p_1^H ≥ 650 \text{ GeV}$ $qq' \rightarrow Hqq'$ 0-jet, High-purity 0-jet, Med-purity	Exp Exp ExpPoly2	14 176 3238	0.180		150 $\leq p_{1}^{V} < 250$ GeV, High-purity 150 $\leq p_{1}^{V} < 250$ GeV, Med-purity 150 $\leq p_{1}^{V} < 250$ GeV, Low-purity $p_{1}^{V} \geq 250$ GeV, High-purity	Exp Exp Exp Exp	16 17 87 15	0.121 0.184 0.644 0.237	√ √ √
p_{T}^{H} ≥ 650 GeV $qq' \rightarrow Hqq'$ 0-jet, High-purity 0-jet, Med-purity 0-jet, Low-purity	Exp Exp ExpPoly2 ExpPoly2	14 176 3238 133314	0.180 4.73 49.7		$\begin{split} &150 \leq p_{V}^{V} < 250 \text{GeV}, \text{High-purity} \\ &150 \leq p_{T}^{V} < 250 \text{GeV}, \text{Med-purity} \\ &150 \leq p_{T}^{V} < 250 \text{GeV}, \text{Low-purity} \\ &p_{T}^{V} \geq 250 \text{GeV}, \text{High-purity} \\ &p_{T}^{V} \geq 250 \text{GeV}, \text{Med-purity} \end{split}$	Exp Exp Exp Exp Exp	16 17 87 15 18	0.121 0.184 0.644 0.237 0.201	\ \ \ \
$p_{\rm T}^H \ge 650 {\rm GeV}$ $qq' \to Hqq'$ 0-jet, High-purity 0-jet, Med-purity 0-jet, Low-purity 1-jet, High-purity 1-jet, High-purity	Exp ExpPoly2 ExpPoly2 Exp	14 176 3238 133314 19	0.180 4.73 49.7 0.125	√	$\begin{array}{l} 150 \leq p_{T}^{V} < 250 {\rm GeV}, {\rm High-purity} \\ 150 \leq p_{T}^{V} < 250 {\rm GeV}, {\rm Med-purity} \\ 150 \leq p_{T}^{V} < 250 {\rm GeV}, {\rm Low-purity} \\ p_{T}^{V} \geq 250 {\rm GeV}, {\rm High-purity} \\ p_{T}^{V} \geq 250 {\rm GeV}, {\rm Med-purity} \\ \hline \\ \bar{t}\bar{t}H \end{array}$	Exp Exp Exp Exp Exp	16 17 87 15 18	0.121 0.184 0.644 0.237 0.201	\ \ \ \
$p_1^H ≥ 650 \text{ GeV}$ $qq' \rightarrow Hqq'$ 0-jet, High-purity 0-jet, Med-purity 0-jet, Low-purity 1-jet, High-purity 1-jet, Med-purity 1-jet, Med-purity	Exp ExpPoly2 ExpPoly2 Exp Exp Exp	14 176 3238 133314 19 187	0.180 4.73 49.7 0.125 0.361	√	$\begin{array}{l} 150 \leq p_{V}^{T} < 250 \text{GeV}, \text{High-purity} \\ 150 \leq p_{V}^{T} < 250 \text{GeV}, \text{Med-purity} \\ 150 \leq p_{V}^{T} < 250 \text{GeV}, \text{Low-purity} \\ p_{V}^{T} \geq 250 \text{GeV}, \text{High-purity} \\ p_{V}^{T} \geq 250 \text{GeV}, \text{Med-purity} \\ \hline \\ \hline \hline \\ \hline $	Exp Exp Exp Exp	16 17 87 15 18	0.121 0.184 0.644 0.237 0.201	\ \ \ \
$p_1^H ≥ 650 \text{ GeV}$ $qq' \rightarrow Hqq'$ 0-jet, High-purity 0-jet, Med-purity 0-jet, Low-purity 1-jet, Help-purity 1-jet, Low-purity 1-jet, Low-purity	Exp ExpPoly2 ExpPoly2 Exp Exp PowerLaw	14 176 3238 133314 19 187 1040	0.180 4.73 49.7 0.125 0.361 1.97	~ 	$\begin{split} &150 \leq p_{T}^{H} < 250\text{GeV},\text{High-purity}\\ &150 \leq p_{T}^{V} < 250\text{GeV},\text{ded-purity}\\ &150 \leq p_{T}^{V} < 250\text{GeV},\text{Low-purity}\\ &p_{T}^{V} \geq 250\text{GeV},\text{High-purity}\\ &p_{T}^{V} \geq 250\text{GeV},\text{Med-purity}\\ \hline & \tilde{t\bar{t}H}\\ \hline &p_{T}^{H} < 60\text{GeV},\text{High-purity}\\ &t\bar{t} < 60\text{GeV},\text{Med-purity} \end{split}$	Exp Exp Exp Exp Exp	16 17 87 15 18 35	0.121 0.184 0.644 0.237 0.201	\ \ \ \
$\begin{array}{c} p_{\rm T}^{H} \geq 650 \ {\rm GeV} \\ \hline \\ \hline \\ qq' \rightarrow Hqq' \\ \hline \\ 0\text{-jet, High-purity} \\ 0\text{-jet, Low-purity} \\ 1\text{-jet, High-purity} \\ 1\text{-jet, Hod-purity} \\ 1\text{-jet, Kod-purity} \\ 1\text{-jet, Low-purity} \\ 2\text{-jets, } m_{JJ} < 60 \ {\rm GeV}, {\rm High-purity} \\ \hline \\ 2\text{-lets, } m_{JJ} < 60 \ {\rm GeV}, {\rm High-purity} \\ \hline \end{array}$	Exp ExpPoly2 ExpPoly2 Exp Exp PowerLaw Exp	14 176 3238 133314 19 187 1040 17	0.180 4.73 49.7 0.125 0.361 1.97 0.499	✓ ✓	$\begin{split} &150 \leq p_{V}^{T} < 250 \text{GeV}, \text{High-purity} \\ &150 \leq p_{T}^{V} < 250 \text{GeV}, \text{Med-purity} \\ &150 \leq p_{T}^{V} < 250 \text{GeV}, \text{Low-purity} \\ &p_{T}^{V} \geq 250 \text{GeV}, \text{High-purity} \\ &p_{T}^{V} \geq 250 \text{GeV}, \text{Med-purity} \\ \hline \\ \hline \\ &\frac{t^{T}H}{t^{T}} \\ \hline \\ &p_{T}^{H} < 60 \text{GeV}, \text{High-purity} \\ &p_{T}^{H} < 60 \text{GeV}, \text{Med-purity} \\ &fold < x_{T}^{H} < t_{T} \\ \\ &fold < x_{T}^{H} < t_{T} \\ \\ &fold < x_{T}^{H} \\ \end{cases}$	Exp Exp Exp Exp Exp Exp Exp	16 17 87 15 18 35 96 24	0.121 0.184 0.644 0.237 0.201 0.040 0.192 0.038	1 1 1
$\begin{array}{c} p_1^H \geq 650 {\rm GeV} \\ \hline \\ \hline \\ qq' \rightarrow Hqq' \\ \hline \\ 0\text{-jet, High-purity} \\ 0\text{-jet, Low-purity} \\ 1\text{-jet, High-purity} \\ 1\text{-jet, High-purity} \\ 1\text{-jet, Kud-purity} \\ 2\text{-jets, } m_{jj} < 60 {\rm GeV}, {\rm High-purity} \\ 2\text{-jets, } m_{jj} < 60 {\rm GeV}, {\rm Med-purity} \\ \hline \\ 2\text{-jets, } m_{jj} < 60 {\rm GeV}, {\rm Med-purity} \\ \hline \\ 2\text{-jets, } m_{jj} < 60 {\rm GeV}, {\rm Med-purity} \\ \hline \\ \end{array}$	Exp ExpPoly2 ExpPoly2 Exp PowerLaw Exp Exp Exp	14 176 3238 133314 19 187 1040 17 157	0.148 0.180 4.73 49.7 0.125 0.361 1.97 0.499 0.489	✓ ✓	$\begin{split} &150 \leq p_{T}^{V} < 250 \text{GeV}, \text{High-purity} \\ &150 \leq p_{T}^{V} < 250 \text{GeV}, \text{Med-purity} \\ &150 \leq p_{T}^{V} < 250 \text{GeV}, \text{Low-purity} \\ &p_{T}^{V} \geq 250 \text{GeV}, \text{High-purity} \\ &p_{T}^{V} \geq 250 \text{GeV}, \text{Med-purity} \\ \hline \\ & \hline \\ & \hline \\ &p_{T}^{H} < 60 \text{GeV}, \text{High-purity} \\ &p_{T}^{H} < 60 \text{GeV}, \text{High-purity} \\ &0 \leq p_{T}^{H} < 120 \text{GeV}, \text{High-purity} \\ &0 \leq p_{T}^{H} < 120 \text{GeV}, \text{High-purity} \\ &p_{T} < 0 \leq P_{T}^{H} < 120 \text{GeV}, \text{High-purity} \\ &p_{T} < 0 \leq P_{T}^{H} < 120 \text{GeV}, \text{High-purity} \\ &p_{T} < 0 \leq P_{T}^{H} < 120 \text{GeV}, \text{High-purity} \\ &p_{T} < 0 \leq P_{T}^{H} < $	Exp Exp Exp Exp Exp Exp Exp Exp	16 17 87 15 18 35 96 34 74	0.121 0.184 0.644 0.237 0.201 0.040 0.192 0.038 0.274	
$\begin{array}{c} p_{1}^{H} \geq 650 \mbox{ GeV } \\ \hline qq' \rightarrow Hqq' \\ \hline 0\mbox{-}jet, High-purity \\ 0\mbox{-}jet, Med-purity \\ 0\mbox{-}jet, Low-purity \\ 1\mbox{-}jet, Med-purity \\ 1\mbox{-}jet, Med-purity \\ 2\mbox{-}jet, m_{jj} < 60 \mbox{ GeV}, High-purity \\ 2\mbox{-}jets, m_{jj} < 60 \mbox{ GeV}, Med-purity \\ 2\mbox{-}jets, m_{jj} < 60 \mbox{ GeV}, Low-purity \\ 2\mbox{-}jets, m_{jj} < 60 \mbox{ GeV}, Low-purity \\ \end{array}$	Exp ExpPoly2 ExpPoly2 Exp PowerLaw Exp Exp PowerLaw	14 176 3238 133314 19 187 1040 17 157 1978	0.180 4.73 49.7 0.125 0.361 1.97 0.499 0.489 1.29	✓ ✓ ✓	$\begin{split} &150 \leq p_{T}^{V} < 250 \text{GeV}, \text{High-purity} \\ &150 \leq p_{T}^{V} < 250 \text{GeV}, \text{High-purity} \\ &150 \leq p_{T}^{V} < 250 \text{GeV}, \text{Low-purity} \\ &p_{T}^{V} \geq 250 \text{GeV}, \text{High-purity} \\ &p_{T}^{H} \leq 250 \text{GeV}, \text{Med-purity} \\ \hline \hline & \bar{t}\bar{t}H \\ \hline &p_{T}^{H} < 60 \text{GeV}, \text{High-purity} \\ &p_{T}^{H} < 60 \text{GeV}, \text{Med-purity} \\ &60 \leq p_{T}^{H} < 120 \text{GeV}, \text{Med-purity} \\ \hline &60 \leq p_{T}^{H} < 120 \text{GeV}, \text{Med-purity} \\ &p_{T}^{H} < 60 \text{GeV}, \text{High-purity} \\ &p_{T}^{H} < 00 \text{GeV}, \text{Med-purity} \\ \hline &p_{T}^{H} < 00 \text{GeV}, \text{Med-purity} \\ &p_{T}^{H} = 00 \text{GeV}, \text{Med-purity} \\ &p_{T}^{H} = 00 \text{GeV}, \text{Med-purity} \\ &p_{T}^{H} = 00 \text{GeV}, \text{Med-purity} \\ \hline &p_{T}^{H} = 00 \text{GeV}, \text{Med-purity} \\ &p_{T}^{H} = 00 \text{GeV}, \text{Med-purity} \\ &p_{T}^{H} = 00 \text{GeV}, \text{Med-purity} \\ \hline &p_{T}^{H} = 00 \text{GeV}, \text{Med-purity} \\ \hline &p_{T}^{H} = 00 \text{GeV}, \text{Med-purity} \\ &p_{T}^{H} = 00 \text{GeV}, \text{Med-purity} \\ \hline &p_{T}^{H} = 0 \text{GeV}, \text{GeV}, \text{GeV}, \text{GeV}, \text{GeV}, \text{GeV}, \text{GeV}, \text{GeV}, $	Exp Exp Exp Exp Exp Exp Exp Exp Exp	16 17 87 15 18 35 96 34 74	0.121 0.184 0.644 0.237 0.201 0.040 0.192 0.038 0.274	
$\begin{array}{c} p_1^H \geq 650 {\rm GeV} \\ \hline \\ \hline \\ qq' \rightarrow Hqq' \\ \hline \\ 0\mbox{-} purity \\ 0\mbox{-} purity \\ 0\mbox{-} purity \\ 0\mbox{-} purity \\ 1\mbox{-} purity \\ 1\mbox{-} purity \\ 1\mbox{-} purity \\ 1\mbox{-} purity \\ 2\mbox{-} purity \\ 2\mbox{-} 2\mbox$	Exp ExpPoly2 ExpPoly2 Exp PowerLaw Exp Exp PowerLaw Exp PowerLaw Exp	14 176 3238 133314 19 187 1040 17 157 1978 53	0.180 4.73 49.7 0.125 0.361 1.97 0.499 0.489 1.29 0.165	✓ ✓ ✓	$\begin{split} &150 \leq p_{T}^{V} < 250\text{GeV},\text{High-purity}\\ &150 \leq p_{T}^{V} < 250\text{GeV},\text{Med-purity}\\ &150 \leq p_{T}^{V} < 250\text{GeV},\text{Low-purity}\\ &p_{T}^{V} \geq 250\text{GeV},\text{High-purity}\\ &p_{T}^{V} \geq 250\text{GeV},\text{Med-purity}\\ \hline \\ \hline & \hline \\ & p_{T}^{H} < 60\text{GeV},\text{High-purity}\\ &p_{T}^{H} < 60\text{GeV},\text{High-purity}\\ &60 \leq p_{T}^{H} < 120\text{GeV},\text{High-purity}\\ &60 \leq p_{T}^{H} < 120\text{GeV},\text{High-purity}\\ &120\text{GeV},\text{Med-purity}\\ &120\text{GeV},\text{High-purity}\\ &120\text{GeV},$	Exp Exp Exp Exp Exp Exp Exp Exp Exp Exp	16 17 87 15 18 35 96 34 74 39	0.121 0.184 0.644 0.237 0.201 0.040 0.192 0.038 0.274 0.018	
$\begin{array}{c} p_1^H \geq 650 {\rm GeV} \\ \hline \\ \hline \\ qq' \rightarrow Hqq' \\ \hline \\ 0\mbox{-} purity \\ 0\mbox{-} purity \\ 0\mbox{-} purity \\ 1\mbox{-} purity \\ 1\mbox{-} purity \\ 2\mbox{-} purity \\ 2\mbox{-} 2\mbox{-} starty \\ 2\mbox{-} starty \ 2\mbox{-} starty \ 2\mbox{-} starty$	Exp ExpPoly2 ExpPoly2 ExpPowerLaw Exp PowerLaw Exp Exp Exp	14 176 3238 133314 19 187 1040 17 157 1978 53 329	0.180 4.73 49.7 0.125 0.361 1.97 0.499 0.489 1.29 0.165 0.520	✓ ✓ ✓	$\begin{split} &150 \leq p_{T}^{V} < 250 \text{GeV}, \text{High-purity} \\ &150 \leq p_{T}^{V} < 250 \text{GeV}, \text{Med-purity} \\ &150 \leq p_{T}^{V} < 250 \text{GeV}, \text{Med-purity} \\ &p_{T}^{V} \geq 250 \text{GeV}, \text{High-purity} \\ &p_{T}^{V} \geq 250 \text{GeV}, \text{Med-purity} \\ \hline \\ \hline & \hline \\ & \hline \\ & \hline \\ & \hline \\ &p_{T}^{H} < 60 \text{GeV}, \text{High-purity} \\ &p_{T}^{H} < 60 \text{GeV}, \text{High-purity} \\ &0 \leq p_{T}^{H} < 120 \text{GeV}, \text{Med-purity} \\ &60 \leq p_{T}^{H} < 120 \text{GeV}, \text{Med-purity} \\ &120 \leq p_{T}^{H} < 200 \text{GeV}, \text{High-purity} \\ &120 \leq p_{T}^{H} < 200 \text{GeV} + \text{High-purity} \\ &120 \leq p_{T}^{H} < 200 \text{GeV} + \text{High-purity} \\ &120 \leq p_{T}^{H} < 200 \text{GeV} + \text{High-purity} \\ &120 \leq p_{T}^{H} < 200 \text{GeV} + \text{High-purity} \\ &120 \leq p_{T}^{H} < 200 \text{GeV} + \text{High-purity} \\ &120 \leq p_{T}^{H} < 200 \text{GeV} + \text{High-purity} \\ &120 \leq p_{T}^{H} < 200 \text{GeV} + \text{High-purity} \\ &120 \leq p_{T}^{H} < 200 \text{GeV} + \text{High-purity} \\ &120 \leq p_{T}^{H} < 200 \text{GeV} + \text{High-purity} \\ &120 \leq p_{T}^{H} < 200 \text{High-purity} \\ &120 \leq p_{T}^{H} < 200 \text{High-purity} \\ &120 \leq p_{T}^{H} < 200 \text{H}$	Exp Exp Exp Exp Exp Exp Exp Exp Exp Exp	16 17 87 15 18 35 96 34 74 39 37	0.121 0.184 0.644 0.237 0.201 0.201 0.040 0.192 0.038 0.274 0.018 0.057	
$\begin{array}{c} p_1^H \geq 650 {\rm GeV} \\ \hline \\ \hline \\ qq' \rightarrow Hqq' \\ \hline \\ 0\mbox{-}purity \\ 0\mbox{-}purity \\ 0\mbox{-}pirty \\ 1\mbox{-}pirty \\ 1\mbox{-}pirty \\ 1\mbox{-}pirty \\ 1\mbox{-}pirty \\ 2\mbox{-}pirty \$	Exp ExpPoly2 ExpPoly2 ExpPoly2 Exp PowerLaw Exp Exp PowerLaw Exp Exp PowerLaw	14 176 3238 133314 19 187 1040 17 157 1978 53 329 709 211	0.148 0.180 4.73 49.7 0.125 0.361 1.97 0.499 0.489 1.29 0.165 0.520 1.15	✓ ✓ ✓	$ \begin{split} &150 \leq p_{1}^{V} < 250 \text{GeV}, \text{High-purity} \\ &150 \leq p_{T}^{V} < 250 \text{GeV}, \text{ded-purity} \\ &150 \leq p_{T}^{V} < 250 \text{GeV}, \text{Low-purity} \\ &p_{T}^{V} \geq 250 \text{GeV}, \text{High-purity} \\ &p_{T}^{H} \geq 250 \text{GeV}, \text{High-purity} \\ \hline & t \bar{t} H \\ \hline & p_{T}^{H} < 60 \text{GeV}, \text{High-purity} \\ &60 \leq p_{T}^{H} < 120 \text{GeV}, \text{High-purity} \\ &60 \leq p_{T}^{H} < 120 \text{GeV}, \text{High-purity} \\ &120 \leq p_{T}^{H} < 200 \text{GeV}, \text{High-purity} \\ &120 \leq p_{T}^{H} < 200 \text{GeV}, \text{Med-purity} \\ &120 \leq p_{T}^{H} < 200 \text{GeV}, \text{Med-purity} \\ &200 \leq p_{T}^{H} < 200 \text{GeV}, \text{Med-purity} \\ &200 \leq p_{T}^{H} < 200 \text{GeV} \\ & H \leq p_{T}^{H} < p_{T}^{H} < p_{T}^{H} < p_{T}^{H} \\ &200 \text{GeV} + p_{T}^{H} < p_{T}^{H} \\ &200 \text{GeV} + p_{T}^{H} \\ &200 \text{GeV} \\ &H \\ &H = p_{T}^{H} \\ &= p_{T}^{H} \\ &$	Exp Exp Exp Exp Exp Exp Exp Exp Exp Exp	16 17 87 15 18 35 96 34 74 39 37 23	0.121 0.184 0.644 0.237 0.201 0.040 0.192 0.038 0.274 0.018 0.057 0.261	
$\begin{array}{c} p_1^H \geq 650 {\rm GeV} \\ \hline \\ \hline \\ \hline \\ qq' \rightarrow Hqq' \\ \hline \\ 0\mbox{-} purity \\ 0\mbox{-} purity \\ 0\mbox{-} purity \\ 1\mbox{-} purity \\ 1\mbox{-} purity \\ 1\mbox{-} purity \\ 1\mbox{-} purity \\ 2\mbox{-} purity \\ 2\mbox{-} 2\mbox{-} $	Exp ExpPoly2 ExpPoly2 Exp PowerLaw Exp PowerLaw Exp PowerLaw Exp Exp Exp	14 176 3238 133314 19 187 1040 17 157 1978 53 329 709 214	0.148 0.180 4.73 49.7 0.125 0.361 1.97 0.499 0.489 1.29 0.165 0.520 1.15 1.08	✓ ✓ ✓	$\begin{split} &150 \leq p_{T}^{V} < 250\text{GeV},\text{High-purity} \\ &150 \leq p_{T}^{V} < 250\text{GeV},\text{Ode-purity} \\ &150 \leq p_{T}^{V} < 250\text{GeV},\text{Low-purity} \\ &p_{T}^{V} \geq 250\text{GeV},\text{High-purity} \\ &p_{T}^{H} < 250\text{GeV},\text{Med-purity} \\ \hline & & \bar{t}\bar{t}H \\ \hline &p_{T}^{H} < 60\text{GeV},\text{High-purity} \\ &p_{T}^{H} < 60\text{GeV},\text{Med-purity} \\ &60 \leq p_{T}^{H} < 120\text{GeV},\text{Med-purity} \\ &120 \leq p_{T}^{H} < 120\text{GeV},\text{High-purity} \\ &120 \leq p_{T}^{H} < 200\text{GeV},\text{High-purity} \\ &120 \leq p_{T}^{H} < 200\text{GeV},\text{High-purity} \\ &120 \leq p_{T}^{H} < 200\text{GeV},\text{Med-purity} \\ &120 \leq p_{T}^{H} < 200$	Exp Exp Exp Exp Exp Exp Exp Exp Exp Exp	16 17 87 15 18 35 96 34 74 39 37 23 19	0.121 0.184 0.644 0.237 0.201 0.040 0.192 0.038 0.274 0.018 0.057 0.261 0.180	
$\begin{array}{l} p_1^H \geq 650 \mathrm{GeV} \\ \hline qq' \rightarrow Hqq' \\ \hline 0_{jet}, High-purity \\ \hline 0_{jet}, Med-purity \\ \hline 0_{jet}, Low-purity \\ \hline 1_{jet}, High-purity \\ \hline 1_{jet}, High-purity \\ \hline 2_{jets}, m_{j/} < 60 \mathrm{GeV}, High-purity \\ \hline 2_{jets}, m_{j/} < 60 \mathrm{GeV}, Med-purity \\ \hline 2_{jets}, m_{j/} < 60 \mathrm{GeV}, Low-purity \\ \hline 2_{jets}, m_{j/} < 60 \mathrm{GeV}, Low-purity \\ \hline 2_{jets}, 60 \leq m_{j/} < 120 \mathrm{GeV}, High-purity \\ \hline 2_{jets}, 60 \leq m_{j/} < 120 \mathrm{GeV}, Med-purity \\ \hline 2_{jets}, 60 \leq m_{j/} < 120 \mathrm{GeV}, Hugh-purity \\ \hline 2_{jets}, 60 \leq m_{j/} < 120 \mathrm{GeV}, Hugh-purity \\ \hline 2_{jets}, 120 \leq m_{j/} < 350 \mathrm{GeV}, Med-purity \\ \hline 2_{jets}, 120 \leq m_{j/} < 350 \mathrm{GeV}, Med-purity \\ \hline \end{array}$	Exp ExpPoly2 ExpPoly2 Exp PowerLaw Exp PowerLaw Exp PowerLaw Exp PowerLaw Exp PowerLaw	14 176 3238 133314 19 187 1040 17 157 1978 53 329 709 214 1671 1112	0.148 0.180 4.73 49.7 0.125 0.361 1.97 0.499 0.489 1.29 0.165 0.520 1.15 1.08 1.07 (.27)	✓ ✓ ✓	$\begin{split} &150 \leq p_{T}^{V} < 250\text{GeV},\text{High-purity} \\ &150 \leq p_{T}^{V} < 250\text{GeV},\text{Med-purity} \\ &p_{T}^{V} \geq 250\text{GeV},\text{Loe-purity} \\ &p_{T}^{V} \geq 250\text{GeV},\text{Med-purity} \\ \hline \\ & \hline \\ \\ & \hline \\ & \hline \\ \\ & \hline \\ \\ & \hline \\ & \hline \\ \\ \\ & \hline \\ \\ \\ & \hline \\ \\ & \hline \\ \\ \\ & \hline \\ \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \\ \hline \\ \hline \\ \\ \hline \\ \hline \\ \hline \\ \\ \hline \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \\ \hline \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \hline \\$	Exp Exp Exp Exp Exp Exp Exp Exp Exp Exp	16 17 87 15 18 35 96 34 74 39 37 23 19	0.121 0.184 0.644 0.237 0.201 0.040 0.192 0.038 0.274 0.018 0.057 0.261 0.180	
$\begin{array}{c} p_1^H \geq 650 {\rm GeV} \\ \hline qq' \rightarrow Hqq' \\ \hline 0_{\rm jet}, {\rm High-purity} \\ 0_{\rm jet}, {\rm High-purity} \\ 0_{\rm jet}, {\rm Low-purity} \\ 1_{\rm jet}, {\rm High-purity} \\ 1_{\rm jet}, {\rm High-purity} \\ 1_{\rm jet}, {\rm High-purity} \\ 2_{\rm jets}, m_{jj} < 60 {\rm GeV}, {\rm High-purity} \\ \geq 2_{\rm jets}, m_{jj} < 60 {\rm GeV}, {\rm High-purity} \\ \geq 2_{\rm jets}, m_{jj} < 60 {\rm GeV}, {\rm Hoel-purity} \\ \geq 2_{\rm jets}, 60 \leq m_{jj} < 120 {\rm GeV}, {\rm High-purity} \\ \geq 2_{\rm jets}, 60 \leq m_{jj} < 120 {\rm GeV}, {\rm High-purity} \\ \geq 2_{\rm jets}, 120 \leq m_{jj} < 120 {\rm GeV}, {\rm Hoel-purity} \\ \geq 2_{\rm jets}, 120 \leq m_{jj} < 350 {\rm GeV}, {\rm High-purity} \\ \geq 2_{\rm jets}, 120 \leq m_{jj} < 350 {\rm GeV}, {\rm Hoel-purity} \\ \geq 2_{\rm jets}, 120 \leq m_{jj} < 350 {\rm GeV}, {\rm Med-purity} \\ \geq 2_{\rm jets}, 120 \leq m_{jj} < 350 {\rm GeV}, {\rm Med-purity} \\ \geq 2_{\rm jets}, 120 \leq m_{jj} < 350 {\rm GeV}, {\rm Mod-purity} \\ \geq 2_{\rm jets}, 120 \leq m_{jj} < 350 {\rm GeV}, {\rm Low-purity} \\ \geq 2_{\rm jets}, 120 \leq m_{jj} < 350 {\rm GeV}, {\rm Low-purity} \\ \geq 2_{\rm jets}, 120 \leq m_{jj} < 350 {\rm GeV}, {\rm Low-purity} \\ \geq 2_{\rm jets}, 120 \leq m_{jj} < 350 {\rm GeV}, {\rm Low-purity} \\ \geq 2_{\rm jets}, 120 \leq m_{jj} < 350 {\rm GeV}, {\rm Low-purity} \\ \geq 2_{\rm jets}, 120 \leq m_{jj} < 350 {\rm GeV}, {\rm Low-purity} \\ \geq 2_{\rm jets}, 120 \leq m_{jj} < 350 {\rm GeV}, {\rm Low-purity} \\ \geq 2_{\rm jets}, 120 \leq m_{jj} < 350 {\rm GeV}, {\rm Low-purity} \\ \geq 2_{\rm jets}, 120 \leq m_{jj} < 350 {\rm GeV}, {\rm Low-purity} \\ \leq 2_{\rm jets}, 120 \leq m_{jj} < 350 {\rm GeV}, {\rm Low-purity} \\ \leq 2_{\rm jets}, 120 \leq m_{jj} < 350 {\rm GeV}, {\rm Low-purity} \\ \leq 2_{\rm jets}, 120 \leq m_{jj} < 350 {\rm GeV}, {\rm Low-purity} \\ \leq 2_{\rm jets}, 120 \leq m_{jj} < 350 {\rm GeV}, {\rm Low-purity} \\ \leq 2_{\rm jets}, 120 \leq m_{jj} < 350 {\rm GeV}, {\rm Low-purity} \\ \leq 2_{\rm jets}, 120 \leq m_{jj} < 350 {\rm GeV}, {\rm Low-purity} \\ \leq 2_{\rm jets}, 120 \leq m_{jj} < 350 {\rm GeV}, {\rm Low-purity} \\ \leq 2_{\rm jets}, 120 \leq m_{jj} < 350 {\rm GeV}, {\rm Low-purity} \\ \leq 2_{\rm jets}, 120 \leq m_{jj} < 350 {\rm GeV}, {\rm Low-purity} \\ \leq 2_{\rm jets}, 120 \leq m_{jj} < 350 {\rm GeV}, {\rm Low-purity} \\ \leq 2_{\rm jets}$	Exp ExpPoly2 ExpPoly2 ExpPoly2 Exp PowerLaw Exp PowerLaw Exp PowerLaw Exp PowerLaw Exp PowerLaw	14 176 3238 133314 19 187 1040 17 157 1978 53 329 709 214 1671 11195	0.148 0.180 4.73 49.7 0.125 0.361 1.97 0.489 0.489 1.29 0.165 0.520 1.15 1.08 1.07 6.34	✓ ✓ ✓	$\begin{split} &150 \leq p_{1}^{V} < 250 \text{GeV}, \text{High-purity} \\ &150 \leq p_{1}^{V} < 250 \text{GeV}, \text{High-purity} \\ &150 \leq p_{1}^{V} < 250 \text{GeV}, \text{Low-purity} \\ &p_{1}^{V} \geq 250 \text{GeV}, \text{High-purity} \\ &p_{1}^{H} < 250 \text{GeV}, \text{High-purity} \\ \hline & \bar{t}\bar{t}H \\ \end{split}$	Exp Exp Exp Exp Exp Exp Exp Exp Exp Exp	16 17 87 15 18 35 96 34 74 39 37 23 19	0.121 0.184 0.644 0.237 0.201 0.040 0.192 0.038 0.274 0.018 0.057 0.261 0.180	
$\begin{array}{c} p_1^H \geq 650 {\rm GeV} \\ \hline qq' \rightarrow Hqq' \\ \hline 0_{\rm jet, High-purity} \\ 0_{\rm jet, High-purity} \\ 0_{\rm jet, High-purity} \\ 1_{\rm jet, High-purity} \\ 1_{\rm jet, High-purity} \\ 1_{\rm jet, Med-purity} \\ 2_{\rm jet, sn_{j/}} < 60 {\rm GeV}, High-purity \\ 2_{\rm jets, m_{j/}} < 60 {\rm GeV}, Med-purity \\ 2_{\rm jets, m_{j/}} < 60 {\rm GeV}, Med-purity \\ 2_{\rm jets, m_{j/}} < 60 {\rm GeV}, Med-purity \\ 2_{\rm jets, m_{j/}} < 60 {\rm GeV}, Med-purity \\ 2_{\rm jets, m_{j/}} < 80 {\rm GeV}, Med-purity \\ 2_{\rm jets, 0} \leq m_{j/} < 120 {\rm GeV}, Med-purity \\ 2_{\rm jets, 0} \leq m_{j/} < 120 {\rm GeV}, Med-purity \\ 2_{\rm jets, 10} \leq m_{j/} < 350 {\rm GeV}, Med-purity \\ 2_{\rm jets, 120} \leq m_{j/} < 350 {\rm GeV}, Med-purity \\ 2_{\rm jets, 120} \leq m_{j/} < 350 {\rm GeV}, Med-purity \\ 2_{\rm jets, 120} \leq m_{j/} < 350 {\rm GeV}, Med-purity \\ 2_{\rm jets, 120} \leq m_{j/} < 700 {\rm GeV}, Med-purity \\ 2_{\rm jets, 350} \leq m_{j/} < 700 {\rm GeV}, High-purity \\ 2_{\rm jets, 350} \leq m_{j/} < 700 {\rm GeV}, High-purity \\ 2_{\rm jets, 350} \leq m_{j/} < 700 {\rm GeV}, High-purity \\ 2_{\rm jets, 350} \leq m_{j/} < 700 {\rm GeV}, High-purity \\ 2_{\rm jets, 350} \leq m_{j/} < 700 {\rm GeV}, High-purity \\ 2_{\rm jets, 350} \leq m_{j/} < 700 {\rm GeV}, High-purity \\ 2_{\rm jets, 350} \leq m_{j/} < 700 {\rm GeV}, High-purity \\ 2_{\rm jets, 350} \leq m_{j/} < 700 {\rm GeV}, High-purity \\ 2_{\rm jets, 350} \leq m_{j/} < 700 {\rm GeV}, High-purity \\ 2_{\rm jets, 350} \leq m_{j/} < 700 {\rm GeV}, High-purity \\ 2_{\rm jets, 350} \leq m_{j/} < 700 {\rm GeV}, High-purity \\ 2_{\rm jets, 350} \leq m_{j/} < 700 {\rm GeV}, High-purity \\ 2_{\rm jets, 350} \leq m_{j/} < 700 {\rm GeV}, High-purity \\ 2_{\rm jets, 350} \leq m_{j/} < 700 {\rm GeV}, High-purity \\ 2_{\rm jets, 350} \leq m_{j/} < 700 {\rm GeV}, High-purity \\ 2_{\rm jets, 350 {\rm $	Exp ExpPoly2 ExpPoly2 ExpPoly2 Exp PowerLaw Exp PowerLaw Exp PowerLaw Exp PowerLaw ExpPoly2 PowerLaw ExpPoly2 PowerLaw	14 176 3238 133314 19 187 1040 17 157 1978 53 329 709 214 1671 11195 25 25	0.148 0.180 4.73 49.7 0.125 0.361 1.97 0.499 0.489 0.489 0.489 0.165 0.520 1.15 1.08 1.07 6.34 0.162	✓ ✓ ✓ ✓	$\begin{split} &150 \leq p_{T}^{V} < 250 \text{GeV}, \text{High-purity} \\ &150 \leq p_{T}^{V} < 250 \text{GeV}, \text{ded-purity} \\ &150 \leq p_{T}^{V} < 250 \text{GeV}, \text{Low-purity} \\ &p_{T}^{V} \geq 250 \text{GeV}, \text{High-purity} \\ &p_{T}^{H} < 250 \text{GeV}, \text{Med-purity} \\ \hline & \bar{h}H \\ \hline &p_{T}^{H} < 60 \text{GeV}, \text{Med-purity} \\ &p_{T}^{H} < 60 \text{GeV}, \text{Med-purity} \\ &60 \leq p_{T}^{H} < 120 \text{GeV}, \text{Med-purity} \\ &120 \leq p_{T}^{H} < 120 \text{GeV}, \text{Med-purity} \\ &120 \leq p_{T}^{H} < 200 \text{GeV}, \text{Med-purity} \\ &120 \leq p_{T}^{H} < 200 \text{GeV}, \text{Med-purity} \\ &120 \leq p_{T}^{H} < 200 \text{GeV} \\ &p_{T}^{H} \geq 300 \text{GeV} \\ \hline & H \\ \hline \\ \hline & H \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ H \\ H \\ H \\ H \\$	Exp Exp Exp Exp Exp Exp Exp Exp Exp Exp	16 17 87 15 18 35 96 34 74 39 37 23 19 	0.121 0.184 0.644 0.237 0.201 0.040 0.192 0.038 0.274 0.018 0.057 0.261 0.180	
$\begin{array}{c} p_1^H \geq 650 \mathrm{GeV} \\ \hline qq' \rightarrow Hqq' \\ \hline 0_{jet}, High-purity \\ \hline 0_{jet}, Med-purity \\ \hline 0_{jet}, Low-purity \\ \hline 1_{jet}, High-purity \\ \hline 1_{jet}, High-purity \\ \hline 1_{jet}, Low-purity \\ \geq 2_{jets}, m_{jj} < 60 \mathrm{GeV}, High-purity \\ \geq 2_{jets}, m_{jj} < 60 \mathrm{GeV}, Med-purity \\ \geq 2_{jets}, 60 \leq m_{jj} < 120 \mathrm{GeV}, Med-purity \\ \geq 2_{jets}, 60 \leq m_{jj} < 120 \mathrm{GeV}, Med-purity \\ \geq 2_{jets}, 60 \leq m_{jj} < 120 \mathrm{GeV}, Med-purity \\ \geq 2_{jets}, 10 \leq m_{jj} < 350 \mathrm{GeV}, Med-purity \\ \geq 2_{jets}, 10 \leq m_{jj} < 350 \mathrm{GeV}, High-purity \\ \geq 2_{jets}, 120 \leq m_{jj} < 350 \mathrm{GeV}, Med-purity \\ \geq 2_{jets}, 120 \leq m_{jj} < 350 \mathrm{GeV}, Med-purity \\ \geq 2_{jets}, 120 \leq m_{jj} < 350 \mathrm{GeV}, Low-purity \\ \geq 2_{jets}, 120 \leq m_{jj} < 350 \mathrm{GeV}, Low-purity \\ \geq 2_{jets}, 350 \leq m_{jj} < 700 \mathrm{GeV}, p_1^H < 200 \mathrm{GeV}, High-purity \\ \geq 2_{jets}, 350 \leq m_{jj} < 700 \mathrm{GeV}, p_1^H < 200 \mathrm{GeV}, Med-purity \\ \geq 2_{jets}, 350 \leq m_{jj} < 700 \mathrm{GeV}, p_1^H < 200 \mathrm{GeV}, Med-purity \\ \geq 2_{jets}, 350 \leq m_{jj} < 700 \mathrm{GeV}, p_1^H < 200 \mathrm{GeV}, Med-purity \\ \geq 2_{jets}, 350 \leq m_{jj} < 700 \mathrm{GeV}, p_1^H < 200 \mathrm{GeV}, Med-purity \\ \geq 2_{jets}, 350 \leq m_{jj} < 700 \mathrm{GeV}, p_1^H < 200 \mathrm{GeV}, Med-purity \\ \geq 2_{jets}, 350 \leq m_{jj} < 700 \mathrm{GeV}, p_1^H < 200 \mathrm{GeV}, Med-purity \\ \geq 2_{jets}, 350 \leq m_{jj} < 700 \mathrm{GeV}, p_1^H < 200 \mathrm{GeV}, Med-purity \\ \geq 2_{jets}, 350 \leq m_{jj} < 700 \mathrm{GeV}, p_1^H < 200 \mathrm{GeV}, Med-purity \\ \geq 2_{jets}, 350 \leq m_{jj} < 700 \mathrm{GeV}, p_1^H < 200 \mathrm{GeV}, Med-purity \\ \geq 2_{jets}, 350 \leq m_{jj} < 700 \mathrm{GeV}, p_1^H < 200 \mathrm{GeV}, Med-purity \\ \geq 2_{jets}, 350 \leq m_{jj} < 700 \mathrm{GeV}, p_1^H < 200 \mathrm{GeV}, Med-purity \\ \geq 2_{jets}, 350 \leq m_{jj} < 700 \mathrm{GeV}, p_1^H < 200 \mathrm{GeV}, Med-purity \\ \geq 2_{jets}, 350 \leq m_{jj} < 700 \mathrm{GeV}, p_1^H < 200 \mathrm{GeV}, Med-purity \\ \geq 2_{jets}, 350 \leq m_{jj} < 700 \mathrm{GeV}, p_1^H < 200 \mathrm{GeV}, Med-purity \\ \geq 2_{jets}, 350 \leq m_{jj} < 700 \mathrm{GeV}, p_1^H < 200 \mathrm{GeV}, Med-purity \\ \geq 2_{jets}, 30 \leq m_{jj} < 700 \mathrm{GeV}, p_1^H < 200 \mathrm{GeV}$	Exp ExpPoly2 ExpPoly2 ExpPoly2 Exp PowerLaw Exp PowerLaw ExpPoly2 PowerLaw Exp ExpPoly2 ExpPoly2 ExpExp Exp	14 176 3238 13314 19 187 1040 17 1978 53 329 709 214 1671 11195 25 260	$\begin{array}{c} 0.448\\ 0.180\\ 4.73\\ 49.7\\ 0.125\\ 0.361\\ 1.97\\ 0.499\\ 0.489\\ 1.29\\ 0.165\\ 0.520\\ 1.15\\ 1.08\\ 1.07\\ 6.34\\ 0.162\\ 0.443\\ 0.162\\ 0.443\\ \end{array}$	✓ ✓ ✓ ✓	$\begin{split} &150 \leq p_{T}^{V} < 250 \text{GeV}, \text{High-purity} \\ &150 \leq p_{T}^{V} < 250 \text{GeV}, \text{ded-purity} \\ &150 \leq p_{T}^{V} < 250 \text{GeV}, \text{Low-purity} \\ &p_{T}^{V} \geq 250 \text{GeV}, \text{High-purity} \\ &p_{T}^{H} < 200 \text{GeV}, \text{High-purity} \\ &\hline & & & \\ p_{T}^{H} < 60 \text{GeV}, \text{High-purity} \\ &p_{T}^{H} < 60 \text{GeV}, \text{High-purity} \\ &60 \leq p_{T}^{H} < 120 \text{GeV}, \text{High-purity} \\ &100 \leq p_{T}^{H} < 120 \text{GeV}, \text{High-purity} \\ &120 \leq p_{T}^{H} < 200 \text{GeV}, \text{High-purity} \\ &120 \leq p_{T}^{H} < 200 \text{GeV}, \text{High-purity} \\ &120 \leq p_{T}^{H} < 200 \text{GeV}, \text{Med-purity} \\ &120 \leq p_{T}^{H} < 300 \text{GeV} \\ \hline & \\ \hline \hline & \\ \hline \hline & \\ \hline \hline & \\ \hline & \\ \hline & \\ \hline & \\ \hline \hline & \\ \hline & \\ \hline & \\ \hline \hline & \\ \hline \hline & \\ \hline & \\ \hline & \\ \hline & \\ \hline \hline & \\ \hline & \\ \hline \hline & \\ \hline \hline & \\ \hline & \\ \hline \hline & \\ \hline \hline & \\ \hline \hline & \\ \hline & \\ \hline \hline & \\ \hline \hline & \\ \hline \hline & \\ \hline \hline \hline & \\ \hline \hline \hline \hline$	Exp Exp Exp Exp Exp Exp Exp Exp Exp Exp	16 17 87 15 18 35 96 34 74 39 37 23 19 19	0.121 0.184 0.644 0.237 0.201 0.201 0.201 0.201 0.274 0.038 0.274 0.018 0.274 0.018 0.257 0.261 0.180	
$\begin{array}{c} p_1^H \geq 650 \mbox{ GeV } \\ \hline qq' \rightarrow Hqq' \\ \hline 0_{jet}, High-purity \\ 0_{jet}, Med-purity \\ 0_{jet}, Low-purity \\ 1_{jet}, High-purity \\ 1_{jet}, High-purity \\ 2_{jets}, m_{j/} < 60 \mbox{ GeV}, High-purity \\ \geq 2_{jets}, m_{j/} < 60 \mbox{ GeV}, Med-purity \\ \geq 2_{jets}, m_{j/} < 60 \mbox{ GeV}, Med-purity \\ \geq 2_{jets}, 60 \le m_{j/} < 120 \mbox{ GeV}, High-purity \\ \geq 2_{jets}, 60 \le m_{j/} < 120 \mbox{ GeV}, High-purity \\ \geq 2_{jets}, 120 \le m_{j/} < 350 \mbox{ GeV}, High-purity \\ \geq 2_{jets}, 120 \le m_{j/} < 350 \mbox{ GeV}, High-purity \\ \geq 2_{jets}, 120 \le m_{j/} < 350 \mbox{ GeV}, Med-purity \\ \geq 2_{jets}, 120 \le m_{j/} < 350 \mbox{ GeV}, Med-purity \\ \geq 2_{jets}, 120 \le m_{j/} < 350 \mbox{ GeV}, Med-purity \\ \geq 2_{jets}, 350 \le m_{j/} < 700 \mbox{ GeV}, p_1^H < 200 \mbox{ GeV}, Med-purity \\ \geq 2_{jets}, 350 \le m_{j/} < 700 \mbox{ GeV}, p_1^H < 200 \mbox{ GeV}, Med-purity \\ \geq 2_{jets}, 350 \le m_{j/} < 700 \mbox{ GeV}, p_1^H < 200 \mbox{ GeV}, Med-purity \\ \geq 2_{jets}, 350 \le m_{j/} < 700 \mbox{ GeV}, p_1^H < 200 \mbox{ GeV}, Med-purity \\ \geq 2_{jets}, 350 \le m_{j/} < 700 \mbox{ GeV}, p_1^H < 200 \mbox{ GeV}, Med-purity \\ \geq 2_{jets}, 350 \le m_{j/} < 700 \mbox{ GeV}, p_1^H < 200 \mbox{ GeV}, Med-purity \\ \geq 2_{jets}, 350 \le m_{j/} < 700 \mbox{ GeV}, p_1^H < 200 \mbox{ GeV}, Med-purity \\ \geq 2_{jets}, 350 \le m_{j/} < 700 \mbox{ GeV}, p_1^H < 200 \mbox{ GeV}, Med-purity \\ \geq 2_{jets}, 350 \le m_{j/} < 700 \mbox{ GeV}, p_1^H < 200 \mbox{ GeV}, Med-purity \\ \geq 2_{jets}, 350 \le m_{j/} < 700 \mbox{ GeV}, p_1^H < 200 \mbox{ GeV}, Med-purity \\ \geq 2_{jets}, 350 \le m_{j/} < 700 \mbox{ GeV}, p_1^H < 200 \mbox{ GeV}, Med-purity \\ \geq 2_{jets}, 350 \le m_{j/} < 700 \mbox{ GeV}, p_1^H < 200 \mbox{ GeV}, Med-purity \\ \geq 2_{jets}, 350 \le m_{j/} < 700 \mbox{ GeV}, p_1^H < 200 \mbox{ GeV}, m_{j/} < 100 $	Exp ExpPoly2 ExpPoly2 Exp PowerLaw Exp PowerLaw Exp PowerLaw Exp ExpPoly2 PowerLaw Exp ExpPoly2 PowerLaw Exp Exp Exp Exp	14 176 3238 133314 19 187 1040 17 1978 53 329 709 214 1671 11155 2560 753	$\begin{array}{c} 0.180\\ 4.73\\ 49.7\\ 0.125\\ 0.361\\ 1.97\\ 0.499\\ 0.489\\ 1.29\\ 0.165\\ 0.520\\ 1.15\\ 1.08\\ 1.07\\ 6.34\\ 0.162\\ 0.443\\ 1.17\\ 0.443\\ 1.17\end{array}$		$\begin{split} & 150 \leq p_{T}^{V} < 250 \text{GeV}, \text{High-purity} \\ & 150 \leq p_{T}^{V} < 250 \text{GeV}, \text{Oed-purity} \\ & 150 \leq p_{T}^{V} < 250 \text{GeV}, \text{Low-purity} \\ & p_{T}^{V} \geq 250 \text{GeV}, \text{High-purity} \\ & p_{T}^{H} < 250 \text{GeV}, \text{High-purity} \\ & \hline p_{T}^{H} < 60 \text{GeV}, \text{High-purity} \\ & 06 \leq p_{T}^{H} < 120 \text{GeV}, \text{High-purity} \\ & 60 \leq p_{T}^{H} < 120 \text{GeV}, \text{High-purity} \\ & 120 \leq p_{T}^{H} < 200 \text{GeV}, \text{Med-purity} \\ & 120 \leq p_{T}^{H} < 200 \text{GeV}, \text{Med-purity} \\ & 120 \leq p_{T}^{H} < 200 \text{GeV}, \text{Med-purity} \\ & 120 \leq p_{T}^{H} < 200 \text{GeV}, \text{Med-purity} \\ & 120 \leq p_{T}^{H} < 300 \text{GeV} \\ \hline & \hline \\ & \hline \\ & \hline H \\ & \hline H \\ & H \\ & H \\ & H \\ H \\ H \\ H \\ H \\ D \\ H \\ B \\ B \\ SM \ (\kappa_{t} = -1) \\ & \hline \end{split}$	Exp Exp Exp Exp Exp Exp Exp Exp Exp Exp	16 17 87 15 18 35 96 34 74 39 37 23 19 17 19 14	0.121 0.184 0.644 0.237 0.201 0.040 0.192 0.038 0.274 0.018 0.057 0.261 0.180 0.371 0.320 0.496	
$\begin{array}{c} p_1^H \geq 650 \mathrm{GeV} \\ \hline qq' \rightarrow Hqq' \\ \hline 0_{jet}, High-purity \\ 0_{jet}, Med-purity \\ 0_{jet}, Low-purity \\ 1_{jet}, High-purity \\ 1_{jet}, High-purity \\ 1_{jet}, Med-purity \\ 2_{jets}, m_{j/} < 60 \mathrm{GeV}, High-purity \\ 2_{jets}, m_{j/} < 60 \mathrm{GeV}, Med-purity \\ 2_{jets}, m_{j/} < 60 \mathrm{GeV}, Med-purity \\ 2_{jets}, 0 \leq m_{j/} < 120 \mathrm{GeV}, High-purity \\ 2_{jets}, 0 \leq m_{j/} < 120 \mathrm{GeV}, High-purity \\ 2_{jets}, 0 \leq m_{j/} < 120 \mathrm{GeV}, High-purity \\ 2_{jets}, 120 \leq m_{j/} < 350 \mathrm{GeV}, High-purity \\ 2_{jets}, 120 \leq m_{j/} < 350 \mathrm{GeV}, Med-purity \\ 2_{jets}, 120 \leq m_{j/} < 350 \mathrm{GeV}, Med-purity \\ 2_{jets}, 120 \leq m_{j/} < 350 \mathrm{GeV}, Med-purity \\ 2_{jets}, 350 \leq m_{j/} < 700 \mathrm{GeV}, p_1^H < 200 \mathrm{GeV}, High-purity \\ 2_{jets}, 350 \leq m_{j/} < 700 \mathrm{GeV}, p_1^H < 200 \mathrm{GeV}, Med-purity \\ 2_{jets}, 350 \leq m_{j/} < 1000 \mathrm{GeV}, p_1^H < 200 \mathrm{GeV}, High-purity \\ 2_{jets}, 350 \leq m_{j/} < 1000 \mathrm{GeV}, p_1^H < 200 \mathrm{GeV}, High-purity \\ 2_{jets}, 700 \leq m_{j/} < 1000 \mathrm{GeV}, p_1^H < 200 \mathrm{GeV}, High-purity \\ 2_{jets}, 700 \leq m_{j/} < 1000 \mathrm{GeV}, p_1^H < 200 \mathrm{GeV}, High-purity \\ 2_{jets}, 700 \leq m_{j/} < 1000 \mathrm{GeV}, p_1^H < 200 \mathrm{GeV}, High-purity \\ 2_{jets}, 700 \leq m_{j/} < 1000 \mathrm{GeV}, p_1^H < 200 \mathrm{GeV}, High-purity \\ 2_{jets}, 700 \leq m_{j/} < 1000 \mathrm{GeV}, p_1^H < 200 \mathrm{GeV}, High-purity \\ 2_{jets}, 700 \leq m_{j/} < 1000 \mathrm{GeV}, p_1^H < 200 \mathrm{GeV}, High-purity \\ 2_{jets}, 700 \leq m_{j/} < 1000 \mathrm{GeV}, p_1^H < 200 \mathrm{GeV}, High-purity \\ 2_{jets}, 700 \leq m_{j/} < 1000 \mathrm{GeV}, p_1^H < 200 \mathrm{GeV}, High-purity \\ 2_{jets}, 700 \leq m_{j/} < 1000 \mathrm{GeV}, p_1^H < 1000 \mathrm{GeV}, 0 \mathrm{GeV}$	Exp ExpPoly2 ExpPoly2 ExpPoly2 Exp PowerLaw Exp PowerLaw Exp PowerLaw Exp ExpPoly2 PowerLaw Exp ExpPoly2 PowerLaw Exp Exp Exp Exp Exp	14 176 3238 133314 19 187 1040 17 1978 53 329 709 214 1671 11195 25 260 753 25 1	0.143 0.180 4.73 49.7 0.125 0.361 1.97 0.499 0.489 1.29 0.165 1.08 1.07 6.34 0.125 1.08 1.07 6.34 0.125 0.520 1.15 1.08 1.07 6.343 1.17 0.423 0.520 1.15 1.07 0.423 0.520 1.15 1.07 0.423 0.520 1.15 1.07 0.452 0.520 1.15 1.07 0.452 0.520 1.15 1.07 0.452 0.520 1.15 1.07 0.452 0.520 1.15 1.07 0.452 0.520 0.15 1.07 0.520 0.15 1.07 0.453 0.520 0.15 1.07 0.453 0.520 0.15 1.07 0.453 0.520 0.15 1.07 0.453 0.520 0.15 1.07 0.455 0.520 0.165 0.520 0.457 0.457 0.457 0.520 0.457 0.457 0.520 0.457 0.520 0.457 0.520 0.457 0.520 0.457 0.520 0.457 0.520 0.457 0.520 0.550		$\begin{split} &150 \leq p_{T}^{V} < 250\text{GeV},\text{High-purity} \\ &150 \leq p_{T}^{V} < 250\text{GeV},\text{Ode-purity} \\ &150 \leq p_{T}^{V} < 250\text{GeV},\text{Low-purity} \\ &p_{T}^{V} \geq 250\text{GeV},\text{High-purity} \\ &p_{T}^{H} < 250\text{GeV},\text{Med-purity} \\ \hline \\ & \hline p_{T}^{H} < 60\text{GeV},\text{Med-purity} \\ &60 \leq p_{T}^{H} < 120\text{GeV},\text{Med-purity} \\ &60 \leq p_{T}^{H} < 120\text{GeV},\text{Med-purity} \\ &120 \leq p_{T}^{H} < 200\text{GeV},\text{Med-purity} \\ &200 \leq p_{T}^{H} < 200\text{GeV},\text{Med-purity} \\ &200 \leq p_{T}^{H} < 300\text{GeV} \\ \hline \\ & \hline \\ & \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline$	Exp Exp Exp Exp Exp Exp Exp Exp Exp Exp	16 17 87 15 18 35 96 34 74 39 37 23 19 17 19 14 38	0.121 0.184 0.644 0.237 0.201 0.201 0.201 0.201 0.274 0.038 0.274 0.038 0.057 0.261 0.180 0.371 0.320 0.496 0.070	
$\begin{array}{c} p_1^H \geq 650 \mathrm{GeV} \\ \hline qq' \rightarrow Hqq' \\ \hline 0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	Exp ExpPoly2 ExpPoly2 ExpPoly2 Exp PowerLaw Exp PowerLaw ExpPoly2 PowerLaw Exp ExpPoly2 PowerLaw Exp Exp ExpPoly2 PowerLaw	14 176 3238 133314 19 187 1040 17 157 1978 53 329 709 214 1671 11195 25 260 753 25 166	0.180 4.73 49.7 0.125 0.361 1.97 0.361 1.97 0.499 0.489 1.29 0.165 1.08 1.07 6.34 0.120 1.15 1.08 1.07 6.34 1.17 0.670 0.443		$\begin{split} & 150 \leq p_{T}^{V} < 250 \text{GeV}, \text{High-purity} \\ & 150 \leq p_{T}^{V} < 250 \text{GeV}, \text{ded-purity} \\ & 150 \leq p_{T}^{V} < 250 \text{GeV}, \text{Low-purity} \\ & p_{T}^{V} \geq 250 \text{GeV}, \text{High-purity} \\ & p_{T}^{H} < 200 \text{GeV}, \text{High-purity} \\ & p_{T}^{H} < 60 \text{GeV}, \text{High-purity} \\ & p_{T}^{H} < 60 \text{GeV}, \text{High-purity} \\ & 60 \leq p_{T}^{H} < 120 \text{GeV}, \text{High-purity} \\ & 60 \leq p_{T}^{H} < 120 \text{GeV}, \text{High-purity} \\ & 120 \leq p_{T}^{H} < 200 \text{GeV}, \text{High-purity} \\ & 120 \leq p_{T}^{H} < 200 \text{GeV}, \text{High-purity} \\ & 120 \leq p_{T}^{H} < 200 \text{GeV}, \text{High-purity} \\ & 120 \leq p_{T}^{H} < 200 \text{GeV}, \text{High-purity} \\ & 120 \leq p_{T}^{H} < 200 \text{GeV} \\ & \hline \\ & \hline \\ \hline$	Exp Exp Exp Exp Exp Exp Exp Exp Exp Exp	16 17 87 15 96 34 74 39 37 23 19 9 9 7 17 19 14 38 500	0.121 0.184 0.644 0.237 0.201 0.040 0.192 0.038 0.274 0.018 0.274 0.018 0.257 0.261 0.180 0.371 0.320 0.496 0.070 0.870	

中国物理学会高能物理分会第十

员代表大会暨学术年会;辽宁师范大学

一届全国会

Submitted to JHEP

$H \rightarrow \gamma \gamma$: Measured STXS (28 pois)

Submitted to JHEP

The events in each category are weighted by ln(1+S/B)

The fitted signal-plus-background pdfs from all categories are also weighted and summed, shown as the solid line.

- This choice of event weight is designed to enhance the contribution of events from categories with higher signal-to-background ratio in a way that approximately matches the impact of these events in the categorized analysis of the data
- Shape description: a double-sided Crystal Ball (DSCB) function, a Gaussian distribution around the peak region, continued by power-law tails at lower and higher myy values.

Submitted to JHEP

42

Submitted to JHEP

In this calculation, only Higgs boson events from the targeted production processes are considered as signal events.

Higgs boson events from other processes as well as the continuum background events are considered as background.

Uncertainty source	Δ., [0],]	
	$\Delta \mu$ [π]	Submitted to IHEP
Theory uncertainties		Submitted to JHEP
Higher-Order QCD Terms	±3.8	
Branching Ratio	± 3.0	
Underlying Event and Parton Shower	± 2.5	
PDF and α_s	± 2.1	
Matrix Element	± 1.0	
Modeling of Heavy Flavor Jets in non- $t\bar{t}H$ Processes	< ±1	
Experimental uncertainties		Inclusive case
Photon energy resolution	± 2.8	
Photon efficiency	± 2.6	
Luminosity	± 1.8	
Pile-up	± 1.5	
Background modelling	±1.3	
Photon energy scale	< ±1	
$\text{Jet}/E_{\text{T}}^{\text{miss}}$	< ±1	
Flavour tagging	< ±1	
Leptons	< ±1	
Higgs boson mass	< ±1	

$H \rightarrow \gamma \gamma$: Production Mode XSs

Submitted to JHEP

中国物理学会高能物理分会第十一届全国会 员代表大会暨学术年会;辽宁师范大学

$H \rightarrow \gamma \gamma$: STXS (28 pois)

员代表大会暨学术年会;辽宁师范大学

Dongshuo Du (USTC)

46

$H \rightarrow \gamma \gamma$: STXS (28 pois)

Table 1: Best-fit values and uncertainties for the production cross-section times $H \to \gamma \gamma$ branching ratio $(\sigma_i \times B_{\gamma\gamma})$ in each STXS region. The values for the $gg \to H$ process also include the contributions from $b\bar{b}H$ production. The total uncertainties are decomposed into statistical (Stat.) and systematic (Syst.) uncertainties. The uncertainties for the $pp \to H\ell\ell/v\bar{\nu}$, $p_T^{\rm V} < 150$ GeV region are truncated at the value for which the model pdf becomes negative. SM predictions are also shown for each quantity with their total uncertainties.

STXS region $(\sigma_i \times B_{\gamma\gamma})$		Uncertainty [fb]		SM prediction	
		Total	Stat.	Syst.	[fb]
$gg \to H, 0$ -jet, $p_{\rm T}^H < 10 {\rm GeV}$	10	+4 -4	+4 -4	+2	15^{+2}_{-2}
$gg \rightarrow H, 0$ -jet, $p_{\rm T}^H \ge 10 {\rm GeV}$	58	+9 -8	+7 -7	+5 -4	47^{+4}_{-4}
$gg \rightarrow H$, 1-jet, $p_{\rm T}^H < 60 {\rm GeV}$	16	+5 -5	+5 -5	+2 -2	15^{+2}_{-2}
$gg \rightarrow H$, 1-jet, $60 \le p_{\rm T}^H < 120 {\rm GeV}$	11	+4	+3 -3	+2 -2	10^{+1}_{-1}
$gg \rightarrow H$, 1-jet, $120 \le p_{\rm T}^H < 200 {\rm GeV}$	1.6	$^{+0.9}_{-0.9}$	+0.9 -0.8	$^{+0.4}_{-0.2}$	$1.7^{+0.3}_{-0.3}$
$gg \rightarrow H, \ge 2$ -jets, $m_{jj} < 350 \text{GeV}, p_{\text{T}}^H < 120 \text{GeV}$	4	+4 -3	+3 -3	$^{+1}_{-1}$	7^{+1}_{-1}
$gg \rightarrow H, \ge 2$ -jets, $m_{jj} < 350 \text{GeV}, 120 \le p_{\text{T}}^{H} < 200 \text{GeV}$	2.8	$^{+1.0}_{-1.0}$	$^{+1.0}_{-1.0}$	+0.3 -0.2	$2.1^{+0.5}_{-0.5}$
$gg \rightarrow H, \ge 2$ -jets, $m_{jj} \ge 350 \text{ GeV}, p_{\mathrm{T}}^{H} < 200 \text{ GeV}$	2	+2 -2	+2 -2	+1 -1	$2.0^{+0.5}_{-0.5}$
$gg \rightarrow H, 200 \le p_{\mathrm{T}}^{H} < 300 \mathrm{GeV}$	1.6	$^{+0.4}_{-0.4}$	$^{+0.4}_{-0.4}$	$^{+0.2}_{-0.1}$	$1.0^{+0.2}_{-0.2}$
$gg \rightarrow H, 300 \le p_{\rm T}^H < 450 {\rm GeV}$	0.04	$^{+0.13}_{-0.11}$	$^{+0.12}_{-0.11}$	+0.03 -0.03	$0.24_{-0.06}^{+0.06}$
$gg \rightarrow H, p_{\rm T}^H \ge 450 {\rm GeV}$	0.09	$^{+0.06}_{-0.05}$	+0.06 -0.05	+0.02 -0.01	$0.04^{+0.01}_{-0.01}$
$qq' \rightarrow Hqq', \leq 1$ -jet and VH -veto	6	+6 -5	+6 -5	+2	$6.6^{+0.2}_{-0.2}$
$qq' \rightarrow Hqq', VH$ -had	0.19	+0.85 -0.73	+0.83 -0.71	+0.17 -0.17	$1.16^{+0.04}_{-0.04}$
$qq' \rightarrow Hqq', \ge 2$ -jets, $350 \le m_{jj} < 700 \text{GeV}, p_{\text{T}}^H < 200 \text{GeV}$	1.5	+0.9 -0.7	+0.7 -0.6	+0.6	$1.22^{+0.04}_{-0.04}$
$qq' \rightarrow Hqq', \ge 2$ -jets, $700 \le m_{jj} < 1000 \text{ GeV}, p_{\mathrm{T}}^{H} < 200 \text{ GeV}$	0.8	+0.5 -0.4	+0.4 -0.3	+0.2 -0.1	$0.58^{+0.02}_{-0.02}$
$qq' \rightarrow Hqq', \geq 2$ -jets, $m_{jj} \geq 1000 \text{ GeV}, p_{\mathrm{T}}^{H} < 200 \text{ GeV}$	1.2	$^{+0.4}_{-0.4}$	+0.3 -0.3	+0.3 -0.2	$1.00^{+0.03}_{-0.03}$
$qq' \rightarrow Hqq', \ge 2$ -jets, $350 \le m_{jj} < 1000 \text{ GeV}, p_{\mathrm{T}}^H \ge 200 \text{ GeV}$	0.04	$^{+0.12}_{-0.10}$	$^{+0.12}_{-0.10}$	$^{+0.02}_{-0.02}$	$0.167^{+0.005}_{-0.005}$
$qq' \rightarrow Hqq', \geq 2$ -jets, $m_{jj} \geq 1000 \text{ GeV}, p_{\mathrm{T}}^{H} \geq 200 \text{ GeV}$	0.27	$^{+0.11}_{-0.09}$	$^{+0.10}_{-0.08}$	$^{+0.05}_{-0.04}$	$0.166^{+0.005}_{-0.005}$
$qq \rightarrow H\ell\nu, p_{\rm T}^V < 150{\rm GeV}$	1.4	+0.6 -0.6	+0.6 -0.6	$^{+0.1}_{-0.1}$	$0.79^{+0.02}_{-0.02}$
$qq \rightarrow H\ell\nu, p_{\rm T}^V \ge 150 {\rm GeV}$	0.20	$^{+0.13}_{-0.11}$	+0.13 -0.11	$^{+0.02}_{-0.01}$	$0.121\substack{+0.005\\-0.005}$
$pp \rightarrow H\ell\ell/\nu\bar{\nu}, p_{\rm T}^V < 150 {\rm GeV}$	-0.29	$^{+0.40}_{-0.08}$	+0.39 -0.08	+0.07 -0.00	$0.45^{+0.02}_{-0.02}$
$pp \rightarrow H\ell\ell/v\bar{\nu}, p_{\rm T}^V \ge 150 {\rm GeV}$	0.04	$^{+0.10}_{-0.08}$	$^{+0.10}_{-0.08}$	$^{+0.02}_{-0.02}$	$0.09^{+0.01}_{-0.01}$
$t\bar{t}H, p_{\mathrm{T}}^{H} < 60 \mathrm{GeV}$	0.22	+0.21 -0.18	+0.21 -0.18	+0.03 -0.01	$0.27^{+0.04}_{-0.04}$
$t\bar{t}H, 60 \le p_{\mathrm{T}}^{H} < 120\mathrm{GeV}$	0.32	+0.23 -0.20	+0.23 -0.20	$^{+0.04}_{-0.02}$	$0.40^{+0.05}_{-0.05}$
$t\bar{t}H$, $120 \le p_{\mathrm{T}}^{H} < 200 \mathrm{GeV}$	0.18	$^{+0.18}_{-0.15}$	$^{+0.17}_{-0.15}$	$^{+0.04}_{-0.02}$	$0.29^{+0.04}_{-0.04}$
$t\bar{t}H$, 200 $\leq p_{\mathrm{T}}^{H} < 300 \mathrm{GeV}$	0.14	+0.09 -0.07	$^{+0.09}_{-0.07}$	$^{+0.01}_{-0.01}$	$0.12^{+0.02}_{-0.02}$
$t\bar{t}H, p_{\mathrm{T}}^{H} \ge 300 \mathrm{GeV}$	0.06	$^{+0.05}_{-0.04}$	$^{+0.05}_{-0.04}$	$^{+0.01}_{-0.01}$	$0.06\substack{+0.01\\-0.01}$
tH	0.4	+0.8 -0.6	+0.7 -0.6	+0.2 -0.2	$0.19\substack{+0.01 \\ -0.02}$

Submitted to JHEP

Results for STXS

中国物理学会高能物理分会第十一届全国会员代表大会暨学术年会;辽宁师范大学

Eur. Phys. J. C 80, 942 (2020) Matrix-based likelihood unfolding

Higgs boson kinematic-related variables								
$p_{\mathrm{T}}^{4\ell}, y_{4\ell} $	Transverse momentum and rapidity of the four-lepton system							
m_{12}, m_{34}	Invariant mass of the leading and subleading lepton pair							
$ \cos heta^* $	Magnitude of the cosine of the decay angle of the leading lepton pair in							
	the four-lepton rest frame relative to the beam axis							
$\cos \theta_1, \cos \theta_2$	Production angles of the anti-leptons from the two Z bosons, where the							
	angle is relative to the Z vector.							
ϕ,ϕ_1	Two azimuthal angles between the three planes constructed from the							
	Z bosons and leptons in the Higgs boson rest frame.							
Jet-related variables								
$N_{\rm jets}, N_{b-\rm jets}$	Jet and <i>b</i> -jet multiplicity							
$p_{\mathrm{T}}^{\mathrm{lead.~jet}},p_{\mathrm{T}}^{\mathrm{sublead.~jet}}$	Transverse momentum of the leading and subleading jet, for events with							
1 1	at least one and two jets, respectively. Here, the leading jet refers to the							
	jet with the highest $p_{\rm T}$ in the event, while subleading refers to the jet							
	with the second-highest $p_{\rm T}$.							
$m_{ii}, \Delta \eta_{ii} , \Delta \phi_{ii}$	Invariant mass, difference in pseudorapidity, and signed difference in ϕ							
	of the leading and subleading jets for events with at least two jets							
Higgs boson and jet-related variables								
$p_{\mathrm{T}}^{4\ell\mathrm{j}}, m_{4\ell\mathrm{j}}$	Transverse momentum and invariant mass of the four-lepton system and							
	leading jet, for events with at least one jet							
$p_{\mathrm{T}}^{4\ell\mathrm{j}\mathrm{j}},m_{4\ell\mathrm{j}\mathrm{j}}$	Transverse momentum and invariant mass of the four-lepton system and							
* <u>1</u> / =~JJ	leading and subleading jets, for events with at least two jets							

Eur. Phys. J. C 80, 942 (2020)

中国物理学会高能物理分会第十一届全国会
员代表大会暨学术年会;辽宁师范大学

Eur. Phys. J. C 80, 942 (2020)

m₁₂ vs. m₃₄

pseudo-observables (arXiv:1504.04018):

EL, ER : relating the couplings for left- and right-handed leptons to Higgs boson **K**zz changes the coupling between H to Z boson

Eur. Phys. J. C 80, 942 (2020)

Dongshuo Du (USTC)

中国物理学会高能物理分会第十一届全国会员代表大会暨学术年会;辽宁师范大学

51

Combination: $H(\gamma\gamma)$ and H(ZZ)

Submitted to JHEP

 y_{H} precision: 20-30% up to 2

Probes PDFs and pQCD modeling of the ggF production mechanism Jet distributions can test pQCD modeling of the ggF production mode, and contributions of other production modes

Combination: $H(\gamma\gamma)$ and H(ZZ)

Submitted to JHEP

Channel	Parameter	Observed 95% confidence interval	Expected 95% confidence interval
$H \to ZZ^* \to 4\ell$	КЪ	[-1.8, 6.4]	[-3.3, 9.3]
	K _C	[-7.7, 18.3]	[-12.3, 19.2]
$H ightarrow \gamma \gamma$	КЪ	[-3.5, 10.2]	[-2.5, 8.0]
	K _C	[-12.6, 18.3]	[-10.1, 17.3]
Combined	КЪ	[-2.0, 7.4]	[-2.0, 7.4]
	K _C	[-8.6, 17.3]	[-8.5, 15.9]

The results for one coupling modifier are obtained while fixing the other one to the SM expectation

The combined observed limit on k_b less stringent than the individual ZZ* :

- Cross section quadratically depend on k_b
- Double minimum in the NLL scan
- > k_b parameter being further from the SM expectation only with the H($\gamma\gamma$) channel

The combined observed limit on k_c similar to the individual ZZ*, but the 68% CL observed combined limits on k_c are worse than the results from the ZZ channel :

- The correlation between the k_b and k_c parameters
- Different best-fit k_b observations for ZZ and γγ channel
- > Data fluctuations in some p_T^H bins

Interpretation with shape vs. shape + norm.

Shape + normalization

Shape only

中国物理学会高能物理分会第十一届全国会员代表大会暨学术年会;辽宁师范大学

1.5

 κ_{b}