Measurement of the Higgs boson width in ZZ final states at CMS

Li Yuan Beihang University

HEPChina2022 August 09, 2022

Outline

- Introduction
- Analysis Strategies
 - ♦ $H \rightarrow ZZ \rightarrow 4l$ on-shell analysis
 - ♦ $H \rightarrow ZZ \rightarrow 4l$ off-shell analysis
 - ♦ $H \rightarrow ZZ \rightarrow 2l2\nu$ off-shell analysis (more details)
- Summary

Higgs Width

- Predicted width in SM $\Gamma_{\rm H}$: 4.1 MeV
- Due to detector response, the mass of Higgs is smeared $\sigma \sim 1-2 GeV$

e.g for an electron
$$E_e \sim 50 \text{GeV}$$
, $\sigma_e \sim 1 \text{GeV}$
 $m_H = \sqrt{(E_{e1} + E_{e2} + E_{e3} + E_{e4})^2 - (p_{4e})^2}$
 $\sigma_{\text{mH}} \sim 2 \times \sigma_e = 2 \text{GeV}$
500 times SM $\Gamma_{\text{H}} \sim 4.1 \text{MeV}$

Unable to measure Higgs Width through on-shell pole

relative energy resolution for e

Indirect way to measure $\Gamma_{\rm H}$

• By measuring the signal strengths in on-shell and off-shell, and take their ratio, we could measure $\Gamma_{\rm H}$

 $\Gamma_{H}/\Gamma_{SM} = \frac{\mu_{off-shell}}{\mu_{on-shell}}$

Off-shell Higgs

Off-shell Higgs in ZZ channel

• Difficulties for probing off-shell Higgs:

- low production rate: $\sim 10\%$ of total xs
- large destructive interference with continuum background

Analyses Involved

Object/Event selection for H \rightarrow ZZ \rightarrow 4I

- Loose ID and isolated $e(\mu)$ with $p_T > 7(5)GeV$, $|\eta| < 2.5(2.4)$
- Vertex $d_{xy} < 0.5$ cm, $d_z < 1$ cm, SIP_{3D} < 3
- Any OS-SF pair $12 < m_{Il\gamma} < 120 \text{ GeV}$
- For any ZZ candidates, define Z_1 candidate with $m_{Il\gamma}$ closest to m_{Z_2}
 - $m_{Z1} > 40 \text{ GeV}; \text{pT}(l1) > 20 \text{ GeV}; \text{pT}(l2) > 10 \text{ GeV}$
 - $\Delta R > 0.02$ between each of the four leptons
 - mII > 4 GeV for OS pairs (regardless of flavour)
 - Reject 4 μ and 4e candidates where the alternative pair ZaZb satisfies $m_{Za} m_Z < |m_{Z1} m_Z|$ and $m_{Zb} < 12 \text{ GeV}$
 - $m_{4l} > 70 \text{ GeV}$
- If more than one ZZ candidate is left, choose the one of highest $\mathcal{D}bkg^{kin}$.
- If $\mathcal{D}bkg^{kin}$ is the same, take the one with Z_1 mass closest to m_Z .

Analysis strategies for $H \rightarrow ZZ \rightarrow 4I$

CMS Preliminary 2016 + 2017 Events / 4 GeV 220 200 180 160 140 120 100 80 60 E 40 200 300 100 400 m_{4/} (GeV)

inclusive m₄₁

- 105 < m₄₁ < 140 GeV is used in the on-shell analysis.
- Event categorisation: VBF-2jet, else VH-hadronic, else VH-leptonic, else VBF-1jet, else boosted, or else untagged.
- Use several observables for fit.

- m₄₁ > 220 GeV is used in the off-shell analysis.
- Event categorisation: VBF-tagged, else VH-hadronic, else untagged.
- Also use several MELA discriminants in the fit.

Object/Event selection for H \rightarrow **ZZ** \rightarrow **2***l***2** ν

Quantity	Requirement		
$p_{\mathrm{T}}^\ell \qquad p_{\mathrm{T}}^\ell \geq 25\mathrm{GeV}$ on both leptons			
$ \eta_\ell $	< 2.4 on μ , < 2.5 on e		
$m_{\ell\ell}$	$ m_{\ell\ell} - 91.2 < 15 { m GeV}$		
$p_{\mathrm{T}}^{\ell\ell}$	$\geq 55\mathrm{GeV}$		
N_ℓ	Exactly two leptons with tight isolation, no extra leptons with loose isolation and $p_{\rm T} \ge 5 {\rm GeV}$		
$N_{ m trk}$	No isolated tracks satisfying the selection requirements		
N_{γ}	No photons with $p_T \ge 20$ GeV, $ \eta < 2.5$ satisfying the baseline selection requirements		
p_{T}^{j}	\geq 30 GeV, used in selecting jets		
$ \eta_j $	< 4.7, used in selecting jets		
N_b	No b-tagged jets based on the loose working point		
$p_{\mathrm{T}}^{\mathrm{miss}}$	$\geq 125{\rm GeV}$ if $N_j < 2, \geq 140{\rm GeV}$ otherwise		
$\Delta \phi_{ m miss}^{\ell \ell}$	> 1.0 between $\vec{p}_{\mathrm{T}}^{\ell\ell}$ and $\vec{p}_{\mathrm{T}}^{\mathrm{miss}}$		
$\Delta \phi_{ m miss}^{\ell\ell+ m jets}$	$>$ 2.5 between $ec{p}_{ ext{T}}^{\ell\ell}+\sumec{p}_{ ext{T}}^{j}$ and $ec{p}_{ ext{T}}^{ ext{miss}}$		
$\min \Delta \phi^{j}_{miss}$	> 0.25 if $N_j = 1$, > 0.5 otherwise		
	among all $p'_{\rm T}$ and $p'_{\rm T}$ combinations		

Signal and backgrounds

- ggF and VBF/VH signal
- ggZZ and VBS ZZ (interfering backgrounds)
- $qq \rightarrow ZZ, WZ$
 - dominant background, constrained by 3*l* WZ Control Region (CR)
- Instrumental $p_{\rm T}^{\rm miss}$
 - mostly from Z+jets events, estimated from single photon CR
- Non-resonant (ttbar, WW)
 - reweighting eµ events from Data
- **tZ+X:** very small contribution, estimated fully from MC.

Signal and interfering backgrounds

- Signals (ggH, VBF), interfering backgrounds (ggZZ, VBS ZZ) and their interference obtained by:
 - POWHEG samples (NLO) with different Higgs pole mass (from 125GeV to 3TeV) for Higgs production and JHUGen for Higgs decay
 - Reweighting by MELA package and Stitching together

$qq \rightarrow WZ/ZZ$ background

- Select 3*l* WZ CR in data.
- Joint fit of m_T^{WZ} in this CR
- Constrain both the normalisation and the shapes for WZ/ZZ in SR.

Instrumental $p_{\rm T}^{\rm miss}$

- Significant contribution from Z+jets events in SR
 - large cross section of Z+jets process
 - miscalibration of jets or neutrinos from hadrons
- Estimated with γ +jets CR (γ as a proxy for Z)
 - bad modelling of p_T^{miss} in MC Z+jets
 - single, isolated γ expected to preserve similar kinematics as Z boson.
 - relatively higher statistics in γ +jets CR than Z+jets events.
- Transfer factors derived in terms of Vertices, boson η and boson p_T
- Genuine MET contributions for high MET region subtracted:
 - $Z(\rightarrow vv)\gamma$: estimated by $ll\gamma$ CR
 - W+jets: estimated by single electron CR
 - others: from MC

γ+jets CR distributions

- γ +jets simulation could not model well data since it is LO!
- We are estimating the size of the Z+jets contribution by γ+jets in data.

Non-resonant background (tt, WW, $H \rightarrow WW$, $\tau\tau$)

- Two isolated leptons not from the same mother particle, thus no Z peak
- Flavour symmetry: $N_{ee} = N_{\mu\mu} = 1/2 N_{e\mu}$
- Use eµ CR, reweighted by the trigger and lepton efficiencies:

$m_{T}{}^{ZZ}\xspace$ distribution after all selections

Systematic Uncertainties

- Theoretical uncertainties
 - renormalisation scale and factorisation scale (up to 30%)
 - αs (mZ) and PDF variations (up to 20%)
 - simulation of the second jet in gg samples (up to 20%)
 - scale and tune variations of PYTHIA
 - NLO EW corrections ($qq \rightarrow ZZ$, WZ)
 - uncorrelated uncertainties for normalisation in 31 WZ CR
- Experimental uncertainties
 - Luminosity (between 1.2% and 2.5%)
 - Pile-up, JES, JER, and MET resolution uncertainty
 - simulation of the second jet in gg samples (up to 20%)
 - uncertainties on lepton, trigger, pile-up jet ID, b-tagging efficiencies

Uncertainties on both normalisation and shape are accounted.

Evidence for off-shell Higgs and Measured Width

- No off-shell hypothesis (μ_{off-shell}=0) excluded by more than 99.9% CL, i.e off-shell Higgs sensitivity 3.6σ
- Observed $\Gamma_H = 3.2^{+2.4}_{-1.7} \text{MeV}$

Summary

- Combination of $H \rightarrow ZZ \rightarrow 2l2v$ and $H \rightarrow ZZ \rightarrow 4l$ off-shell analyses results in finding the **first evidence of off-shell Higgs production at LHC**
- Highlight in the Higgs width measurement.

 $\Gamma_H = 3.2^{+2.4}_{-1.7}$ MeV

Reaching ~50% precision for the first time!

• Off-shell events further constrain HVV anomalous couplings.

Previous results on width measurement

- CMS: $H \rightarrow ZZ \rightarrow 4l$ **on-shell:** Run 1 + Run 2 (77.5 fb^{-1}) **off-shell:** Run 2 (77.5 fb⁻¹) 5.1 fb⁻¹ (7 TeV) + 19.7 fb⁻¹ (8 TeV) + 77.5 fb⁻¹ (13 TeV) _ CMS Observed --- Expected — Observed, 2016+2017 10 --- Expected, 2016+2017 -2 Δ InL 8 6 10 12 14 $\Gamma_{\rm H}$ (MeV) 68% [95%] Observed Expected Parameter $4.1^{+5.0}_{-4.0}$ [0.0, 13.7] $3.2^{+2.8}_{-2.2}$ [0.08, 9.16] Γ_H (MeV) Observed Expected Parameter $\mu^{\text{off-shell}}$ $0.78^{+0.72}_{-0.53}$ [0.02, 2.28] $1.00^{+1.20}_{-0.99}$ [0.0, 3.2] $\mu_F^{\text{off-shell}}$ $0.86^{+0.92}_{-0.68}$ [0.0, 2.7] $1.0^{+1.3}_{-1.0}$ [0.0, 3.5] $\mu_V^{\text{off-shell}}$ $0.67^{+1.26}_{-0.61}$ [0.0, 3.6] $1.0^{+3.8}_{-1.0}$ [0.0, 8.4]
- ATLAS: $H \rightarrow ZZ \rightarrow 4l \& H \rightarrow ZZ \rightarrow 2l2v$

on-shell: Run 2 (36.1fb⁻¹) **off-shell:** Run 2 (36.1fb⁻¹)

The 95% CL upper limits on $\mu_{off-shell}$, Γ_H / Γ_H^{SM} and R_{gg} . Both the observed and expected limits are given. The 1σ (2σ) uncertainties represent 68% (95%) confidence intervals for the expected limit. The upper limits are evaluated using the CL_s method, with the SM values as the alternative hypothesis for each interpretation.

		Observed	Expected		
			Median	±1 σ	$\pm 2 \sigma$
$\mu_{ ext{off-shell}}$	$ZZ \rightarrow 4\ell$ analysis $ZZ \rightarrow 2\ell 2\nu$ analysis Combined	4.5 5.3 3.8	4.3 4.4 3.4	[3.3, 5.4] [3.4, 5.5] [2.7, 4.2]	[2.7, 7.1] [2.8, 7.0] [2.3, 5.3]
$\Gamma_H/\Gamma_H^{\rm SM}$	Combined	3.5	3.7	[2.9, 4.8]	[2.4, 6.5]
R _{gg}	Combined	4.3	4.1	[3.3, 5.6]	[2.7, 8.2]

Additional results on $\mu_{off-shell}$

Table 4: Constraints on the $\mu_F^{\text{off-shell}}$, $\mu_V^{\text{off-shell}}$, and $\mu^{\text{off-shell}}$ parameters are summarized. The constraints on $\mu^{\text{off-shell}}$ are obtained with $R_{V,F}^{\text{off-shell}}$ unconstrained or = 1. The measurements are presented using the $2\ell 2\nu$ analysis alone, or with the inclusion of off-shell 4ℓ events. The designation 'c.v.' stands for the central value obtained in the likelihood scan, and the expected central value is always unity, so it is not quoted explicitly.

Parameter	Condition		Observed	Expected	
Farameter	Condition	c.v.	68% 95% CL	68% 95% CL	
$\mu_{ m F}^{ m off-shell}$ (2 ℓ 2 $ u$ + 4 ℓ)	$\mu_{ m V}^{ m off-shell}$ unconst.	0.62	[0.17, 1.3] [0.0060, 2.0]	$[2 \cdot 10^{-5}, 2.1] \mid < 3.0$	
$\mu_{ m F}^{ m off-shell}$ (2 ℓ 2 $ u$)	$\mu_{ m V}^{ m off-shell}$ unconst.	0.41	[0.014, 1.4] < 2.6	< 2.5 < 3.7	
$\mu_{ m V}^{ m off-shell}$ (2 ℓ 2 $ u$ + 4 ℓ)	$\mu_{ m F}^{ m off-shell}$ unconst.	0.90	[0.31, 1.8] [0.051, 2.9]	[0.11, 3.0] < 4.5	
$\mu_{ m V}^{ m off-shell}$ (2 ℓ 2 $ u$)	$\mu_{ m F}^{ m off-shell}$ unconst.	1.1	[0.28, 2.4] [0.016, 3.8]	[0.07, 3.2] < 4.8	
$\mu^{\mathrm{off}-\mathrm{shell}}$	$R_{\rm V,F}^{\rm off-shell} = 1$	0.74	[0.36, 1.3] [0.13, 1.8]	[0.16, 2.0] [0.0086, 2.7]	
$(2\ell 2\nu + 4\ell)$	$R_{V,F}^{off-shell}$ unconst.	0.62	[0.17, 1.3] [0.0061, 2.0]	$[4 \cdot 10^{-5}, 2.1] \mid [1 \cdot 10^{-5}, 3.0]$	
$\mu^{ m off-shell}$ (2 ℓ 2 $ u$)	$R_{ m V,F}^{ m off-shell}=1$ $R_{ m V,F}^{ m off-shell}$ unconst.	0.74 0.41	$[0.25, 1.5] \mid [0.043, 2.3]$ $[0.014, 1.4] \mid [2 \cdot 10^{-5}, 2.6]$	$[0.11, 2.3] \mid [2 \cdot 10^{-4}, 3.2]$ $[3 \cdot 10^{-5}, 2.5] \mid [6 \cdot 10^{-6}, 3.7]$	

HVV anomalous couplings

- Could probe the HVV anomalous couplings in ZZ final states $A(HVV) \sim \left[a_1 - e^{i\phi_{A1}} \frac{(q_{V1}^2 + q_{V2}^2)}{\Lambda_1^2} + \cdots \right] m_V^2 \epsilon_{V1}^* \epsilon_{V2}^* + |a_2| e^{i\phi_{a2}} f_{\mu\nu}^{*(1)} f^{*(2),\mu\nu} + |a_3| e^{i\phi_{a3}} f_{\mu\nu}^{*(1)} \tilde{f}^{*(2),\mu\nu}$ In SM, $a_1=2$ and the rest are 0.
- Define: $f_{ai} = \frac{|a_i|^2 \sigma_i}{\sum_j |a_j|^2 \sigma_j}, \ a_j = a_1, a_2, a_3, \frac{1}{\Lambda_1^2}$
- Measure $f_{ai} \cos(\Phi_{ai})$ by assuming $a_i \ge 0, \cos(\Phi_{ai}) = \pm 1$ to probe HVV Anomalous couplings

HVV anomalous coupling limits

HVV anomalous coupling from on-shell

Parar	Parameter Scenario			Observed	Expected	
f _{a3}	<mark>009</mark>	Approach 1 $f_{a2} = f_{\Lambda 1} = f_{\Lambda 1}^{Z\gamma} = 0$ Approach 1 float $f_{a2}, f_{\Lambda 1}, f_{\Lambda 1}^{Z\gamma}$ Approach 2 float $f_{a2}, f_{\Lambda 1}$	best fit 68% CL 95% CL best fit 68% CL 95% CL 95% CL 95% CL	0.00004 [-0.00007, 0.00044] [-0.00055, 0.00168] -0.00805 [-0.02656, 0.00034] [-0.07191, 0.00990] 0.00005 [-0.00010, 0.00061] [-0.00072, 0.00218]	0.00000 [-0.00081, 0.00081] [-0.00412, 0.00412] 0.00000 [-0.00086, 0.00086] [-0.00423, 0.00422] 0.0000 [-0.0012, 0.0012] [-0.0057, 0.0057]	
f _{a2}		Approach 1 $f_{a3} = f_{\Lambda 1} = f_{\Lambda 1}^{Z\gamma} = 0$ Approach 1 float $f_{a3}, f_{\Lambda 1}, f_{\Lambda 1}^{Z\gamma}$ Approach 2 float $f_{a3}, f_{\Lambda 1}$	best fit 68% CL 95% CL best fit 68% CL 95% CL 95% CL 95% CL	$\begin{array}{l} 0.00020 \\ [-0.00010, 0.00109] \\ [-0.00078, 0.00368] \\ -0.24679 \\ [-0.41087, -0.15149] \cup [-0.00008, 0.00065] \\ [-0.66842, -0.08754] \cup [-0.00091, 0.00309] \\ -0.00002 \\ [-0.00178, 0.00103] \\ [-0.00694, 0.00536] \end{array}$	0.0000 [-0.0012, 0.0014] [-0.0075, 0.0073] 0.0000 [-0.0017, 0.0014] [-0.0082, 0.0073] 0.0000 [-0.0060, 0.0033] [-0.0206, 0.0131]	
$f_{\Lambda 1}$		Approach 1 $f_{a3} = f_{a2} = f_{\Lambda 1}^{Z\gamma} = 0$ Approach 1 float $f_{a3}, f_{a2}, f_{\Lambda 1}^{Z\gamma}$ Approach 2 float f_{a3}, f_{a2}	best fit 68% CL 95% CL best fit 68% CL 95% CL 95% CL 95% CL	$\begin{array}{l} 0.00004 \\ [-0.00002, 0.00022] \\ [-0.00014, 0.00060] \\ 0.18629 \\ [-0.00002, 0.00019] \cup [0.07631, 0.27515] \\ [-0.00523, 0.35567] \\ 0.00012 \\ [-0.00021, 0.00141] \\ [-0.00184, 0.00443] \end{array}$	0.00000 [-0.00016, 0.00026] [-0.00069, 0.00110] 0.00000 [-0.00017, 0.00036] [-0.00076, 0.00134] 0.0000 [-0.0013, 0.0030] [-0.0056, 0.0102]	
$f^{Z\gamma}_{\Lambda 1}$		Approach 1 $f_{a3} = f_{a2} = f_{\Lambda 1} = 0$ Approach 1 float f_{a3} , f_{a2} , $f_{\Lambda 1}$	best fit 68% CL 95% CL best fit 68% CL 95% CL	$\begin{array}{l} -0.00001 \\ [-0.00099, 0.00057] \\ [-0.00387, 0.00301] \\ -0.02884 \\ [-0.09000, -0.00534] \cup [-0.00068, 0.00078] \\ [-0.29091, 0.03034] \end{array}$	0.0000 [-0.0026, 0.0020] [-0.0096, 0.0082] 0.0000 [-0.0027, 0.0026] [-0.0099, 0.0096]	

TABLE VI. Summary of allowed 68% C.L. (central values with uncertainties) and 95% C.L. (in square brackets) intervals for the anomalous coupling parameters $f_{ai} \cos(\phi_{ai})$ obtained from the analysis of the combination of Run 1 (only on-shell) and Run 2 (on-shell and off-shell) data sets. Three constraint scenarios are shown: using only on-shell events, using both on-shell and off-shell events with the Γ_H left unconstrained, or with the constraint $\Gamma_H = \Gamma_H^{SM}$.

Parameter	Scenario	Observed	Expected
$f_{a3}\cos(\phi_{a3})$	On-shell	$-0.0001^{+0.0004}_{-0.0015}$ [-0.163, 0.090]	$0.0000^{+0.0019}_{-0.0019}$ [-0.082, 0.082]
	Any Γ_H	$0.0000^{+0.0003}_{-0.0010}$ [-0.0165, 0.0087]	$0.0000^{+0.0015}_{-0.0015}$ [-0.038, 0.038]
	$\Gamma_{H}=\Gamma_{H}^{\rm SM}$	$0.0000^{+0.0003}_{-0.0009}$ [-0.0067, 0.0050]	$0.0000^{+0.0014}_{-0.0014}$ [-0.0098, 0.0098]
$f_{a2}\cos(\phi_{a2})$	On-shell	$0.0004^{+0.0026}_{-0.0006}$ [-0.0055, 0.0234]	$0.0000^{+0.0030}_{-0.0023}$ [-0.021, 0.035]
	Any Γ_H	$0.0004^{+0.0026}_{-0.0006}$ [-0.0035, 0.0147]	$0.0000^{+0.0019}_{-0.0017}$ [-0.015, 0.021]
	$\Gamma_H = \Gamma_H^{\rm SM}$	$0.0005^{+0.0025}_{-0.0006}$ [-0.0029, 0.0129]	$0.0000^{+0.0012}_{-0.0016}$ [-0.010, 0.012]
$f_{\Lambda 1} \cos(\phi_{\Lambda 1})$	On-shell	$0.0002^{+0.0030}_{-0.0009}$ [-0.209, 0.089]	$0.0000^{+0.0012}_{-0.0006}$ [-0.059, 0.032]
	Any Γ_H	$0.0001^{+0.0015}_{-0.0006}$ [-0.090, 0.059]	$0.0000^{+0.0013}_{-0.0007}$ [-0.017, 0.019]
	$\Gamma_{H}=\Gamma_{H}^{\rm SM}$	$0.0001^{+0.0015}_{-0.0005}$ [-0.016, 0.068]	$0.0000^{+0.0013}_{-0.0006}$ [-0.015, 0.018]
$f_{\Lambda 1}^{Z\gamma}\cos(\phi_{\Lambda 1}{}^{Z\gamma})$	On-shell	$0.0000^{+0.3554}_{-0.0087}$ [-0.17, 0.61]	$0.0000^{+0.0091}_{-0.0100}$ [-0.098, 0.343]

4. Higgs boson width

• Stay tuned for more exciting results with more data and more advanced analysis techniques.

https://indico.ihep.ac.cn/event/14180/session/0/contribution/93/material/slides/0.pdf