

Precision test of the Zbb anomalous couplings at colliders

Bin Yan Institute of High Energy Physics

Aug 8-11, 2022

Bin Yan, C.-P. Yuan, PRL127(2021)5,051801 Bin Yan, Zhite Yu and C.-P. Yuan, PLB822(2021)136697 Hai Tao Li, Bin Yan and C.-P. Yuan, PLB833(2022)137300 Hongxin Dong, Peng Sun, Bin Yan and C.-P. Yuan, PLB829(2022)137076

Standard Model Total Production Cross Section Measurements Status: May 2020

Why we need the New Physis?

Some open questions:

- 1. What is Dark Matter ?
- 2. What is the origin of the neutrino mass?
- 3. What is the nature of the electroweak symmetry breaking?
- 4. What is the nature of the Higgs boson (Composite or elementary particle)?
- 5.

New Physics Models and new measurements to answer these questions

The New Physics Signals?

- D0 I 80478 ± 83 CDF I 80432 ± 79 1. W-boson mass? 7σ DELPHI 80336 ± 67 L3 80270 ± 55 OPAL 80415 ± 52 CDF, Science 376(2022)6589 ALEPH 80440 ± 51 D0 II 80376 + 23 ATLAS 80370 ± 19 80433 ± 9 CDF II BNL g-2 80100 80200 80300 79900 80000 80400 80500 2. Muon g-2? 4.2σ W boson mass (MeV/c²) FNAL g-2 + 4.2σ PRL126(2021)14,141801 ALEPH (j&s) Experime OPAL (j&s) 19.5 20.0 20.5 21.0 21.5 17.5 18.0 18.5 19.0 JADE (j&s) $a_{..} \times 10^9 - 1165900$ Dissertori (3i) e+e 3. Strong coupling? $\sim 4\sigma$ JADE (3j) jets & Verbytskyi (2j) Kardos (EEC) shapes PDG2020 Abbate (T) Gehrmann (T) G. Bell, C. Lee, Y. Makris, J. Talbert and Bin Yan, in preparation Hoang (C) 0.115 0.120 0.125 0.1100.130
- 4. Forward-backward asymmetry of bottom quark @ LEP
 - PDG2020 2.1σ
- 5. Anomaly of B physics

The New Physics Signals?

Status of Zbb couplings

Excluded by off-Z pole data

 $\mathcal{L} = \bar{b}\gamma_{\mu}(\kappa_V g_V - \kappa_A g_A \gamma_5) bZ_{\mu}$

e

Large deviation of the Zbb coupling
 The degeneracy of the Zbb coupling

Status of Zbb couplings

- A. How to break the degeneracy of the Zbb coupling? New experiments: CEPC (e+e- collider), etc.
- B. How to explain the LEP data?

New Physics?

Many new physics models

e.g. Custodial symmetry + heavy B' quark

K. Agashe, R. Contino, L. Rold, A. pomarol, 2006'

Statistical Fluctuation or Systematic error? New experiments: e.g. CEPC So...

Should we just wait for the next generation lepton colliders?

Any possibility from LHC and ep colliders (HERA and EIC)?

In 2020, The United States Department of Energy announced that an EIC will be built over the next ten years at Brookhaven National Laboratory

Zbb couplings@ LHC and ep colliders

A. LHC

B. HERA and EIC

Single-Spin Asymmetry

Jet charge weighted Single-Spin Asymmetry

A. Zbb couplings @LHC

Bin Yan, C.-P. Yuan, PRL127(2021)5,051801

Charge conjugation invariance

 $\mathcal{L} = \bar{b}\gamma_{\mu}(\kappa_V g_V - \kappa_A g_A \gamma_5) bZ_{\mu}$

Only axial-vector components contribute to the cross section

Isospin symmetry

Massless quark doublet will vanish, only top and bottom quarks can

contribute to the scattering

Goldstone boson equivalence theorem

The polarization of Z boson is different from quark initial state

Bottom quark's contribution is comparable to the top quark, i.e. $\sigma(b)/\sigma(t) \simeq 1.1$

Break the Zbb coupling degeneracy

Current Zh data could break the degeneracy

$$\mathcal{L} = \frac{g_W}{2c_W} \bar{b} \gamma_\mu (\kappa_v^b g_V^{b,\text{SM}} - \kappa_a^b g_A^{b,\text{SM}} \gamma_5) b Z_\mu$$

ATLAS: 2008.02508

Break the Zbb coupling degeneracy

Current Zh data could break the degeneracy

$$\mathcal{L} = \frac{g_W}{2c_W} \bar{b} \gamma_\mu (\kappa_v^b g_V^{b,\text{SM}} - \kappa_a^b g_A^{b,\text{SM}} \gamma_5) b Z_\mu$$

Including all Zh data

Removing the two high P_T^Z data **12**

B. Zbb couplings@LHC

Hongxin Dong, Peng Sun, Bin Yan and C.-P. Yuan

Indirectly search

Is it possible to probe the Zbb coupling directly at the LHC?

1. Huge backgrounds at hadron colliders;

2. The dependence on Zbb couplings is similar to R_b

$$\Upsilon(ns) \to \ell^+ \ell^-$$

 $J^{PC}(\gamma, \Upsilon(ns)) = 1^{--}$

charge conjugation invariance axial-vector component of Zbb coupling

Sensitivity @ HL-LHC

C. Zbb couplings@HERA and EIC

Bin Yan, Zhite Yu and C.-P. Yuan, PLB822(2021)136697

Single-Spin Asymmetry (SSA):

$$A_e^b = \frac{\sigma_{b,+}^{\text{tot}} - \sigma_{b,-}^{\text{tot}}}{\sigma_{b,+}^{\text{tot}} + \sigma_{b,-}^{\text{tot}}}$$

+/-: right/left-handed lepton

- 1. <u>Photon-only</u> diagrams will cancel in SSA
- 2. Leading contribution: γ -*Z* interference
- 3. Only sensitive to the vector component of the Zbb coupling
- 4. It plays a complementary role to the HL-LHC, which is sensitive to the axial-vector component of the Zbb coupling

DIS cross section

Zbb couplings @EIC

The minimal luminosities needed to resolve the degeneracy or exclude LEP AFB data: (i) : $\mathcal{L} > 0.5 \text{ fb}^{-1}$; (ii) : $\mathcal{L} > 4.0 \text{ fb}^{-1}$. (i) : $\mathcal{L} > 42.0 \text{ fb}^{-1}$; (ii) : $\mathcal{L} > 332.6 \text{ fb}^{-1}$.

D. Zbb couplings @EIC

Hai Tao Li, Bin Yan and C.-P. Yuan, arxiv:2112.07747

Single-Spin Asymmetry:

 $A_e^b = \frac{\sigma_{b,+}^{\text{tot}} - \sigma_{b,-}^{\text{tot}}}{\sigma_{b,+}^{\text{tot}} + \sigma_{b,-}^{\text{tot}}}$

vector component of the Zbb coupling

Is it possible to probe the axial-vector component at the EIC?

Average jet charge weighted Single-Spin Asymmetry (WSSA):

$$A_{e}^{bQ} = \frac{\sigma_{b,+}^{Q} - \sigma_{b,-}^{Q}}{\sigma_{b,+}^{Q} + \sigma_{b,-}^{Q}} \qquad \qquad \sigma_{b,\pm}^{Q} = \int dp_{T}^{j} \frac{d\sigma_{b,\pm}^{\text{tot}}}{dp_{T}^{j}} \langle Q_{J} \rangle_{b}(p_{T}^{j})$$
$$\langle Q_{J} \rangle_{b}(p_{T}^{j}) = \sum_{q=u,d,c,s,b} \left[f_{J}^{q}(p_{T}^{j},\epsilon_{q}^{b}) - f_{J}^{\bar{q}}(p_{T}^{j},\epsilon_{q}^{b}) \right] \langle Q_{J}^{q} \rangle_{b}(p_{T}^{j})$$

D. Krohn, M. D. Schwartz, T. Lin and W. J. Waalewijn, PRL 110,212001(2013) W.J.Waalewijn, PRD86,094030(2012)

Zbb couplings @EIC

Summary

A. We proposed four different new methods to probe the Zbb coupling at the LHC and ep colliders;

B. The Zh data at the 13 TeV LHC can resolve the apparent degeneracy of the Zbb coupling;

C. Zh cross section, exclusive Z boson decay at the LHC and WSSA at the EIC depend on the axial-vector Zbb coupling, while the SSA in HERA or EIC is sensitive to the vector Zbb coupling;

D. It is hopeful to verify or exclude the LEP measurement by those new methods.

Thank you!

Backup

Status of Zbb couplings

Gfitter Group: EPJC74 (2014)3046

$$R_b = \frac{\Gamma(Z \to b\bar{b})}{\sum_q \Gamma(Z \to q\bar{q})}$$

$A_{FB}^b \sim 2.1\sigma$ deviation with SM prediction

D. Choudhury, T. M. P. Tait, C.E.M. Wagner, PRD 65(2002)053002

$$\mathcal{L} \supset \frac{g}{c_W} Z_\mu (g_{Lb} \bar{b}_L \gamma^\mu b_L + g_{Rb} \bar{b}_R \gamma^\mu b_R)$$

 $g_{Lb} < 0$ was Excluded

 g_{Rb} Could be positive and negative

Status of Zbb couplings

Off Z-pole data is sensitive to the sign of the Zbb couplings

Z

$$\mathcal{L}_{\text{eff}} = -\frac{g_W}{c_W} Z_\mu (g_{Lb} \bar{b}_L \gamma^\mu b_L + g_{Rb} \bar{b}_R \gamma^\mu b_R)$$

D. Choudhury, T. M. P. Tait, C.E.M. Wagner, PRD 65(2002)053002

 $g_{Lb} < 0$ was Excluded

 g_{Rb} Could be positive or negative

Sensitivity@HL-LHC

Sensitivity@HL-LHC

Exclusive Z boson decay@ NRQCD

LO:

NLO:

TABLE II. The branching ratios of $Z \to \Upsilon(ns) + \gamma$ at the LO and NLO in unites of 10^{-8} with renormalization scale $\mu = m_Z$.

$BR(Z \to \Upsilon(ns) + \gamma)$	$\Upsilon(1s)$	$\Upsilon(2s)$	$\Upsilon(3s)$
LO	3.83 ± 0.20	1.82 ± 0.21	1.32 ± 0.17
NLO	5.61 ± 0.29	2.66 ± 0.31	1.93 ± 0.25

The relativistic correction is very small T.- C. Huang and F. Petriello, PRD92,014007(2015)

DIS cross section

Polarized cross section

$$\frac{d\sigma_{\lambda_e}^{\pm}}{\sigma_0 dx dy} = F_1 \left((1-y)^2 + 1 \right) + F_L \frac{1-y}{x} \mp F_3 \lambda_e \left(y - \frac{y^2}{2} \right)$$
$$\lambda_e = \pm 1: \text{ lepton helicity}$$

DIS variables:

$$Q^{2} = -q^{2}, \quad x = \frac{Q^{2}}{2P \cdot q}, \quad y = \frac{P \cdot q}{P \cdot k}, \quad xyS = Q^{2},$$

Simplified-ACOT- χ scheme@NNLO

M. Guzzi et al, PRD86,053005(2012)

28

M. A. G. Aivazis, F.I. Olness, W.-K. Tung, 94' M. A. G. Aivazis, J.C. Collins, F.I. Olness, W.-K. Tung, 94' J.C. Collins, 98' M.Kramer, F.I. Olness, D. E. Soper, 00' $amodeline Q \sim m_f$ $m_f = 0$ $m_f \neq 0$

SSA@HERA and EIC

SSA@EIC

$$A_e^b = \frac{1}{P_e} \frac{\sigma_b^{\text{tot}}(P_e) - \sigma_b^{\text{tot}}(-P_e)}{\sigma_b^{\text{tot}}(P_e) + \sigma_b^{\text{tot}}(-P_e)} \qquad P_e = P'_e$$

Zbb couplings @HERA

H1	R	L
e^-p	$47.3\mathrm{pb}^{-1},0.36$	$104.4\mathrm{pb}^{-1},-0.258$
e^+p	$101.3\mathrm{pb}^{-1},0.325$	$80.7\mathrm{pb}^{-1},-0.37$
ZEUS	R	L
e^-p	$71.2\mathrm{pb}^{-1},0.29$	$98.7\mathrm{pb}^{-1},-0.27$
e^+p	$78.8\mathrm{pb}^{-1},0.32$	$56.7\mathrm{pb}^{-1},-0.36$

JHEP 09, 061 (2012)

b

 $\kappa_V \kappa_A$

Eur. Phys. J. C 62, 625 (2009)

Phys. Rev. D 87, 052014 (2013)

Simplified-ACOT- χ scheme@NNLO

 $-m_b$

(i)
$$\epsilon_q^b = 0.001, \qquad \epsilon_c^b = 0.03, \qquad \epsilon_b = 0.7;$$

(ii) $\epsilon_q^b = 0.01, \qquad \epsilon_c^b = 0.2, \qquad \epsilon_b = 0.5.$

- 1. The SSA is sensitive to κ_V
- 2. $\kappa_{V,A} < 0$ could be excluded by HERA data
- 3. It could be used to crosscheck the off-*Z*-pole data **30**

Jet Charge

R.D. Field and R.P. Feynman, NPB136,1(1978)

$$Q_J = \frac{1}{\left(p_T^j\right)^{\kappa}} \sum_{i \in \text{jet}} Q_i (p_T^i)^{\kappa}, \ \kappa > 0,$$

Jet Charge

Transverse-momentum-weighting scheme:

R.D. Field and R.P. Feynman, NPB136,1(1978)

$$Q_J = \frac{1}{(p_T^j)^\kappa} \sum_{i \in jet} Q_i (p_T^i)^\kappa, \ \kappa > 0$$

H. T. Li and I. Vitev, PRD 101(2020)076020

Perfect agreement between theory and data