

The Study of aQGC and nTGC

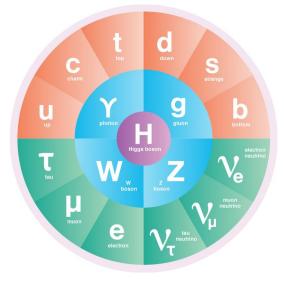
报告人: Yu-Chen Guo (郭禹辰)

辽宁师范大学

合作者:杨冀翀、岳崇兴、李佟

中国物理学会高能物理分会第十一届全国会员代表大会暨学术年会

Contents


- I. Introductions
- II. Study aQGC at the LHC
 - The exclusive $\gamma\gamma \rightarrow W^+W^-$ scattering
 - VBS processes of *Wyjj* and *Zyjj* production
- III. Study nTGC and aQGC at future lepton colliders
 - nTGC in $e^+ e^- \rightarrow Z\gamma$ process at future $e^+ e^-$ colliders
 - aQGC in tri-photon production at future muon colliders
- IV. Summary

I. Introductions

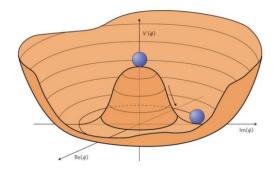
The Standard Model

particles

Quarks, leptons, Gauge bosons, Higgs.

Simple and powerful yet unnatural, incomplete...

interactions


Gauge interactions:

 $SU(3)_C \times SU(2)_L \times U(1)_Y$

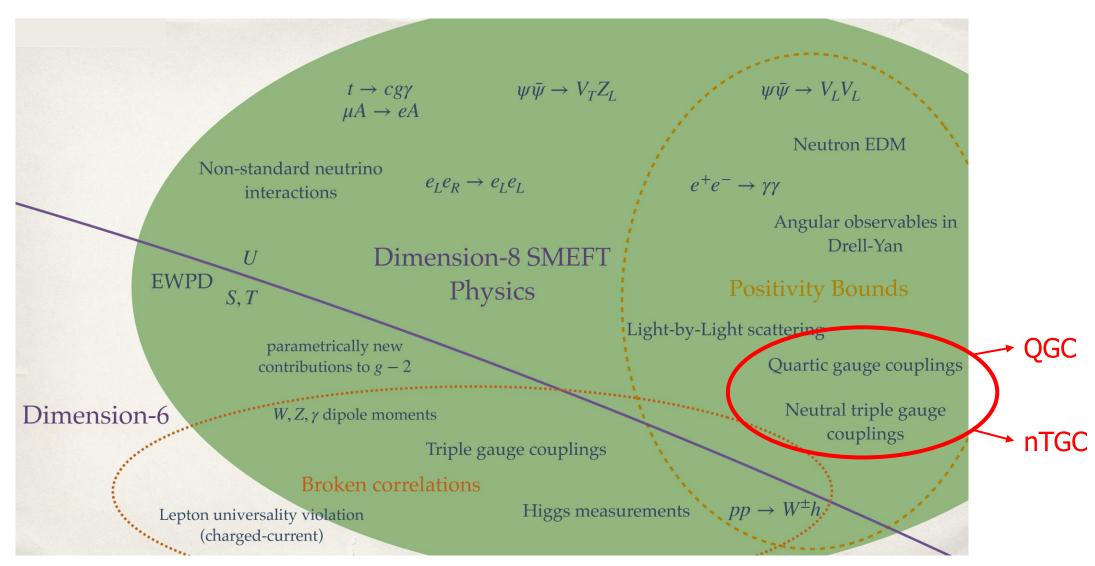
$\mathcal{L} = -\frac{1}{4} F_{AL} F^{A\nu}$ $+ i \mathcal{F} \mathcal{D} \mathcal{J} + h.c$ $+ \mathcal{J}_{ij} \mathcal{J}_{jj} \mathcal{J}_{jj} \mathcal{J} + h.c$ $+ |\mathcal{D}_{aj} \mathcal{G}|^{2} - V(\mathcal{G})$

Higgs mechanism

The Higgs vacuum expectation value (vev) breaks $SU(2)_L \times U(1)_Y$ to $U(1)_{EM}$, and gives particles masses.

But we have no idea what the new physics is...

The Standard Model Effective Field Theory


$$\mathcal{L}_{SMEFT} = \mathcal{L}_{SM} + \mathcal{L}^{(5)} + \mathcal{L}^{(6)} + \mathcal{L}^{(7)} + \mathcal{L}^{(8)} + \cdots$$

$$\mathcal{L}^{(d)} = \sum_{i} \frac{C_{i}^{(d)}}{\Lambda^{d-4}} \mathcal{O}_{i}^{(d)} , \quad d > 4$$

SMEFT: a more powerful way to analyze the data

- Assume the SM Lagrangian is correct but incomplete
- Look for additional interactions between SM particles
- Most efficient way to extract information from LHC and other experiments
- Model-independent way to look for physics beyond the Standard Model (BSM)

Dimension-8 Operators

Dimension-8 Operators affecting aQGC

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{SM} + \sum_{i} \frac{C_{6i}}{\Lambda^2} \mathcal{O}_{6i} + \sum_{j} \frac{C_{8j}}{\Lambda^4} \mathcal{O}_{8j} + \dots$$

$$\mathcal{L}_{aQGC} = \sum_{i=0}^{2} \frac{f_{S_i}}{\Lambda^4} O_{S_i} + \sum_{j=0}^{7} \frac{f_{M_j}}{\Lambda^4} O_{M_j} + \sum_{k=0}^{9} \frac{f_{T_k}}{\Lambda^4} O_{T_k}$$

$$\begin{aligned}
O_{S_0} &= \left[\left(D_{\mu} \Phi \right)^{\dagger} D_{\nu} \Phi \right] \times \left[\left(D^{\mu} \Phi \right)^{\dagger} D^{\nu} \Phi \right], \\
O_{S_1} &= \left[\left(D_{\mu} \Phi \right)^{\dagger} D_{\mu} \Phi \right] \times \left[\left(D^{\nu} \Phi \right)^{\dagger} D^{\nu} \Phi \right], \\
O_{S_2} &= \left[\left(D_{\mu} \Phi \right)^{\dagger} D_{\nu} \Phi \right] \times \left[\left(D^{\nu} \Phi \right)^{\dagger} D^{\mu} \Phi \right],
\end{aligned}$$

[Eboli, Gonzalez-Garcia, Mizukoshi, Phys. Rev. D 74 (2006) 073005] [Eboli, Gonzalez-Garcia, Phys. Rev. D 93 (2016) 093013]

$$O_{M_0} = \operatorname{Tr} \left[\widehat{W}_{\mu\nu} \widehat{W}^{\mu\nu} \right] \times \left[\left(D^{\beta} \Phi \right)^{\dagger} D^{\beta} \Phi \right],$$

$$O_{M_1} = \operatorname{Tr} \left[\widehat{W}_{\mu\nu} \widehat{W}^{\nu\beta} \right] \times \left[\left(D^{\beta} \Phi \right)^{\dagger} D^{\mu} \Phi \right],$$

$$O_{M_2} = \left[B_{\mu\nu} B^{\mu\nu} \right] \times \left[\left(D^{\beta} \Phi \right)^{\dagger} D^{\beta} \Phi \right],$$

$$O_{M_3} = \left[B_{\mu\nu} B^{\nu\beta} \right] \times \left[\left(D^{\beta} \Phi \right)^{\dagger} D^{\mu} \Phi \right],$$

$$O_{M_4} = \left[\left(D_{\mu} \Phi \right)^{\dagger} \widehat{W}_{\beta\nu} D^{\mu} \Phi \right] \times B^{\beta\nu},$$

$$O_{M_5} = \left[\left(D_{\mu} \Phi \right)^{\dagger} \widehat{W}_{\beta\nu} D_{\nu} \Phi \right] \times B^{\beta\mu} + h.c.,$$

$$O_{M_7} = \left(D_{\mu} \Phi \right)^{\dagger} \widehat{W}_{\beta\nu} \widehat{W}_{\beta\mu} D_{\nu} \Phi,$$

$$O_{T_0} = \operatorname{Tr} \left[\widehat{W}_{\mu\nu} \widehat{W}^{\mu\nu} \right] \times \operatorname{Tr} \left[\widehat{W}_{\alpha\beta} \widehat{W}^{\alpha\beta} \right],$$

$$O_{T_1} = \operatorname{Tr} \left[\widehat{W}_{\alpha\nu} \widehat{W}^{\mu\beta} \right] \times \operatorname{Tr} \left[\widehat{W}_{\mu\beta} \widehat{W}^{\alpha\nu} \right],$$

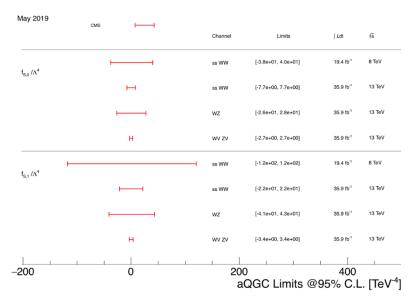
$$O_{T_2} = \operatorname{Tr} \left[\widehat{W}_{\alpha\mu} \widehat{W}^{\mu\beta} \right] \times \operatorname{Tr} \left[\widehat{W}_{\beta\nu} \widehat{W}^{\nu\alpha} \right],$$

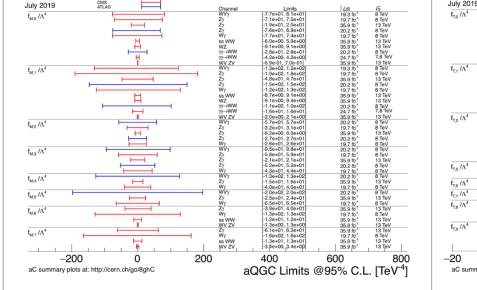
$$O_{T_5} = \operatorname{Tr} \left[\widehat{W}_{\mu\nu} \widehat{W}^{\mu\nu} \right] \times B_{\alpha\beta} B^{\alpha\beta},$$

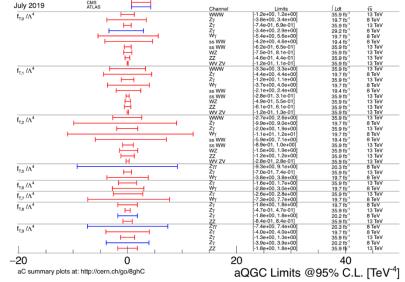
$$O_{T_6} = \operatorname{Tr} \left[\widehat{W}_{\alpha\nu} \widehat{W}^{\mu\beta} \right] \times B_{\mu\beta} B^{\alpha\nu},$$

$$O_{T_7} = \operatorname{Tr} \left[\widehat{W}_{\alpha\mu} \widehat{W}^{\mu\beta} \right] \times B_{\beta\nu} B^{\nu\alpha},$$

$$O_{T_8} = B_{\mu\nu} B^{\mu\nu} \times B_{\alpha\beta} B^{\alpha\beta},$$

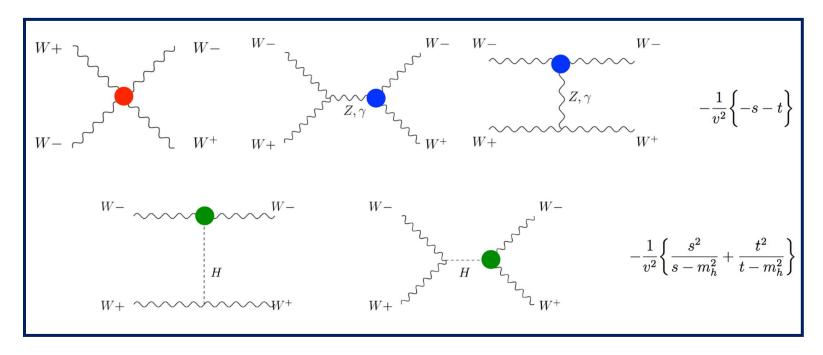

$$O_{T_9} = B_{\alpha\mu} B^{\mu\beta} \times B_{\beta\nu} B^{\nu\alpha},$$


Limits on Dimension-8 Operators contributing to aQGC


Scalar/longitudinal parameters $f_{S,i}$

Mixed transverse and longitudinal parameters $f_{M,i}$

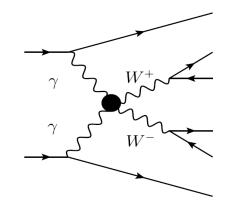
Transverse parameters $f_{T,i}$



https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMPaTGC#aQGC_Results

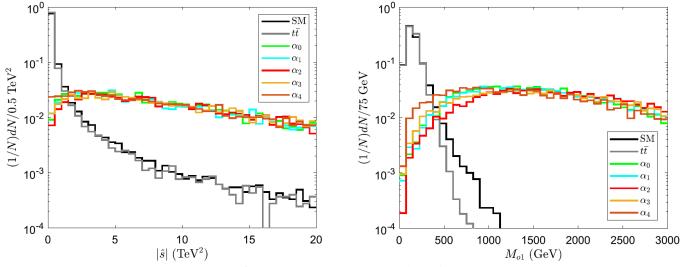
Chinese experimentalists have made great contributions!

QGC in VBS


- Deviations in triple gauge boson couplings (TGC), Higgs couplings, or quartic gauge boson couplings (QGC) lead to ~s energy growth.
- QGC is unique in VBS

II. Study aQGC at the LHC

• The exclusive $\gamma \gamma \rightarrow W^+ W^-$


The Traditional Approach

Nucl. Phys. B 961 (2020) 115222

$$\mathcal{L}_{AAWW} = \sum_{i=0}^{4} \alpha_i V_{AAWW,i}$$

$$\begin{split} V_{AAWW,0} &= F_{\mu\nu}F^{\mu\nu}W^{+\alpha}W^{-}_{\alpha}, \\ V_{AAWW,1} &= F_{\mu\nu}F^{\mu\alpha}W^{+\nu}W^{-}_{\alpha}, \\ V_{AAWW,2} &= F_{\mu\nu}F^{\mu\nu}W^{+}_{\alpha\beta}W^{-\alpha\beta}, \\ V_{AAWW,3} &= F_{\mu\nu}F^{\nu\alpha}W^{+}_{\alpha\beta}W^{-\beta\mu}, \\ V_{AAWW,4} &= F_{\mu\nu}F^{\alpha\beta}W^{+}_{\mu\nu}W^{-\alpha\beta}, \end{split}$$

[Barr et al. , Phys.Rev.D 84 (2011) 095031.; Kalinowski et al. , Eur. Phys. J. C 78 (2018) 403]

The constraints on the vertices at $\sqrt{s} = 14$ TeV with $\mathcal{L} = 3$ ab⁻¹.

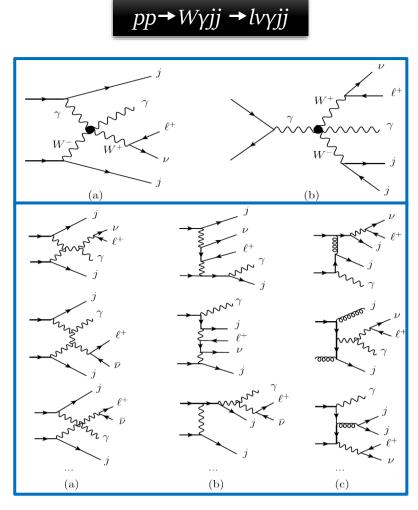
Constraint	$SS \le 2$	$SS \le 3$	$SS \le 5$
$\alpha_0(\text{TeV}^{-2})$	[-0.0026, 0.0024]	[-0.0031, 0.0030]	[-0.0041, 0.0040]
$\alpha_1 (\text{TeV}^{-2})$	[-0.0080, 0.0092]	[-0.010, 0.011]	[-0.013, 0.015]
$\alpha_2(\text{TeV}^{-4})$	[-0.16, 0.098]	[-0.18, 0.13]	[-0.23, 0.17]
α_3 (TeV ⁻⁴)	[-0.75, 0.38]	[-0.87, 0.50]	[-1.06, 0.70]
$\alpha_4(\text{TeV}^{-4})$	[-0.50, 0.48]	[-0.62, 0.59]	[-0.80, 0.78]

The exclusive $\gamma \gamma \rightarrow WW$ production is sensitive to the O_{Mi} operators.

The Machine Learning approach

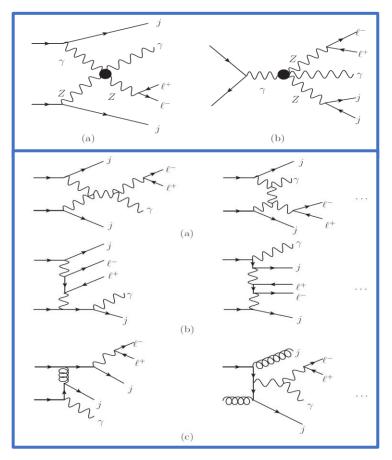
JHEP 09, 085 (2021), Phys. Rev. D 104, 035021 (2021)

What can Machine Learning do?


What methods have been used?

For more details please follow Parallel Session VIII (1):

"Using machine learning methods to study aQGCs and nTGCs"


by Ji-Chong Yang

• *Wyjj* and *Zyjj* production

Chin. Phys. C 44 (2020) 12, 123105

Phys. Rev. D 104 (2021) 035015

Unitarity Bound

Strength of Weak Interactions at Very High Energies and the Higgs Boson Mass

Benjamin W. Lee, C. Quigg,* and H. B. Thacker Fermi National Accelerator Laboratory, Batavia, Illinois 60510 (Received 28 February 1977)

It is shown that if the Higgs boson mass exceeds $M_c = (8\pi\sqrt{2}/3G_F)^{1/2}$ partial-wave unitarity is not respected by the tree diagrams for two-body reactions of gauge bosons, and the weak interactions must become strong.

- scattering amplitudes are harder at high energies than allowed by unitarity
- model-independent upper bound on scale of Higgs

Partial-wave Unitarity

In the two-to-two scattering of electroweak gauge bosons $V_{1,\lambda_1}V_{2,\lambda_2} \rightarrow V_{3,\lambda_3}V_{4,\lambda_4}$

the helicity amplitude can be expanded in partial waves as

$$\mathcal{M}(V_{1\lambda_1}V_{2\lambda_2} \to V_{3\lambda_3}V_{4\lambda_4}) = 16\pi \sum_J (J + \frac{1}{2})\sqrt{1 + \delta_{V_{1\lambda_1}}^{V_{2\lambda_2}}} \sqrt{1 + \delta_{V_{3\lambda_3}}^{V_{4\lambda_4}}} \ d_{\lambda\mu}^J(\theta,\varphi) \ e^{iM\varphi} \times T^J(V_{1\lambda_1}V_{2\lambda_2} \to V_{3\lambda_3}V_{4\lambda_4})$$

Partial-wave unitarity requires

$$|T^J(V_{1\lambda_1}V_{2\lambda_2} \to V_{3\lambda_3}V_{4\lambda_4})| \le 2.$$

[Corbett, Eboli and Gonzalez-Garcia, Phys. Rev. D 91 (2014) 035014] [Corbett, Eboli and Gonzalez-Garcia, Phys. Rev. D 96 (2017) 035006]

The strongest limit of $WV \rightarrow W\gamma$ and $VV \rightarrow Z\gamma$ subprocesses

$$\tilde{s}(f_{M_{2}}) \leq \sqrt{\frac{s_{W}^{2}256\pi M_{W}^{2}\Lambda^{4}}{c_{W}^{2}e^{2}v^{2}|f_{M_{2}}|}},$$

$$\tilde{s}(f_{M_{3}}) \leq \sqrt{\frac{384\pi s_{W}^{2}M_{W}^{2}\Lambda^{4}}{c_{W}^{2}e^{2}v^{2}|f_{M_{3}}|}},$$

$$\tilde{s}(f_{M_{4}}) \leq \sqrt{\frac{512\pi M_{W}M_{Z}s_{W}^{2}\Lambda^{4}}{e^{2}v^{2}|f_{M_{4}}|}},$$

$$\tilde{s}(f_{M_{5}}) \leq \sqrt{\frac{384\pi M_{W}M_{Z}s_{W}\Lambda^{4}}{c_{W}e^{2}v^{2}|f_{M_{5}}|}},$$

$$\tilde{s}(f_{T_{5}}) \leq \sqrt{\frac{40\pi\Lambda^{4}}{c_{W}^{2}|f_{T_{5}}|}},$$


$$\tilde{s}(f_{T_{6}}) \leq \sqrt{\frac{32\pi\Lambda^{4}}{c_{W}^{2}|f_{T_{6}}|}},$$

$$\tilde{s}(f_{T_{7}}) \leq \sqrt{\frac{64\pi\Lambda^{4}}{c_{W}^{2}|f_{T_{7}}|}}.$$

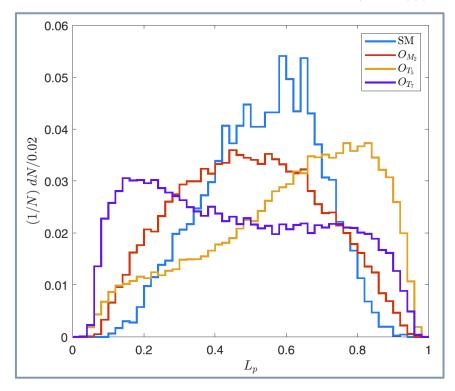
$$\begin{split} \hat{s}^{O_{M_{0}}} &\leq \sqrt{\frac{32\sqrt{2}\pi c_{W} s_{W} M_{Z}^{2} \Lambda^{4}}{|f_{M_{0}}|e^{2}v^{2}}}, \ \hat{s}^{O_{M_{1}}} &\leq \sqrt{\frac{64\sqrt{2}c_{W} s_{W} M_{Z}^{2} \Lambda^{4}}{|f_{M_{1}}|e^{2}v^{2}}}, \\ \hat{s}^{O_{M_{2}}} &\leq \sqrt{\frac{16\sqrt{2}\pi c_{W} s_{W} M_{Z}^{2} \Lambda^{4}}{|f_{M_{2}}|e^{2}v^{2}}}, \ \hat{s}^{O_{M_{3}}} &\leq \sqrt{\frac{32\sqrt{2}\pi c_{W} s_{W} M_{Z}^{2} \Lambda^{4}}{|f_{M_{3}}|e^{2}v^{2}}}, \\ \hat{s}^{O_{M_{4}}} &\leq \sqrt{\frac{64\sqrt{2}\pi c_{W}^{2} s_{W}^{2} M_{Z}^{2} \Lambda^{4}}{|f_{M_{4}}|(c_{W}^{2} - s_{W}^{2})e^{2}v^{2}}}, \ \hat{s}^{O_{M_{5}}} &\leq \sqrt{\frac{192\pi s_{W}^{2} M_{W} M_{Z} \Lambda^{4}}{|f_{M_{5}}|e^{2}v^{2}}}, \\ \hat{s}^{O_{M_{7}}} &\leq \sqrt{\frac{6\sqrt{2}\pi \Lambda^{4}}{|f_{M_{7}}|e^{2}v^{2}}}, \ \hat{s}^{O_{T_{0}}} &\leq \sqrt{\frac{6\sqrt{2}\pi \Lambda^{4}}{|f_{M_{5}}|e^{2}v^{2}}}, \\ \hat{s}^{O_{T_{1}}} &\leq \sqrt{\frac{6\sqrt{2}\pi \Lambda^{4}}{|f_{M_{7}}|c_{W}^{2} s_{W}^{2}}}, \ \hat{s}^{O_{T_{2}}} &\leq \sqrt{\frac{8\sqrt{2}\pi \Lambda^{4}}{3|f_{T_{2}}|c_{W}^{3} s_{W}}}, \\ \hat{s}^{O_{T_{5}}} &\leq \sqrt{\frac{\pi \Lambda^{4}}{|f_{T_{5}}|c_{W}^{2} s_{W}^{2}}}, \ \hat{s}^{O_{T_{6}}} &\leq \sqrt{\frac{4\pi \Lambda^{4}}{|f_{T_{6}}|(c_{W}^{2} - s_{W}^{2})}}, \\ \hat{s}^{O_{T_{7}}} &\leq \sqrt{\frac{8\sqrt{2}\pi \Lambda^{4}}{3|f_{T_{7}}|(c_{W}^{2} - s_{W}^{2})c_{W} s_{W}}}, \ \hat{s}^{O_{T_{8}}} &\leq \sqrt{\frac{3\pi \Lambda^{4}}{10|f_{T_{8}}|c_{W}^{2} s_{W}^{2}}}, \\ \hat{s}^{O_{T_{9}}} &\leq \sqrt{\frac{2\pi \Lambda^{4}}{3|f_{T_{9}}|c_{W}^{2} s_{W}^{2}}}. \end{split}$$

But \tilde{s} is a distribution, not a limit.

How can we use Unitarity bound at LHC?

Select Event with Unitary bounds

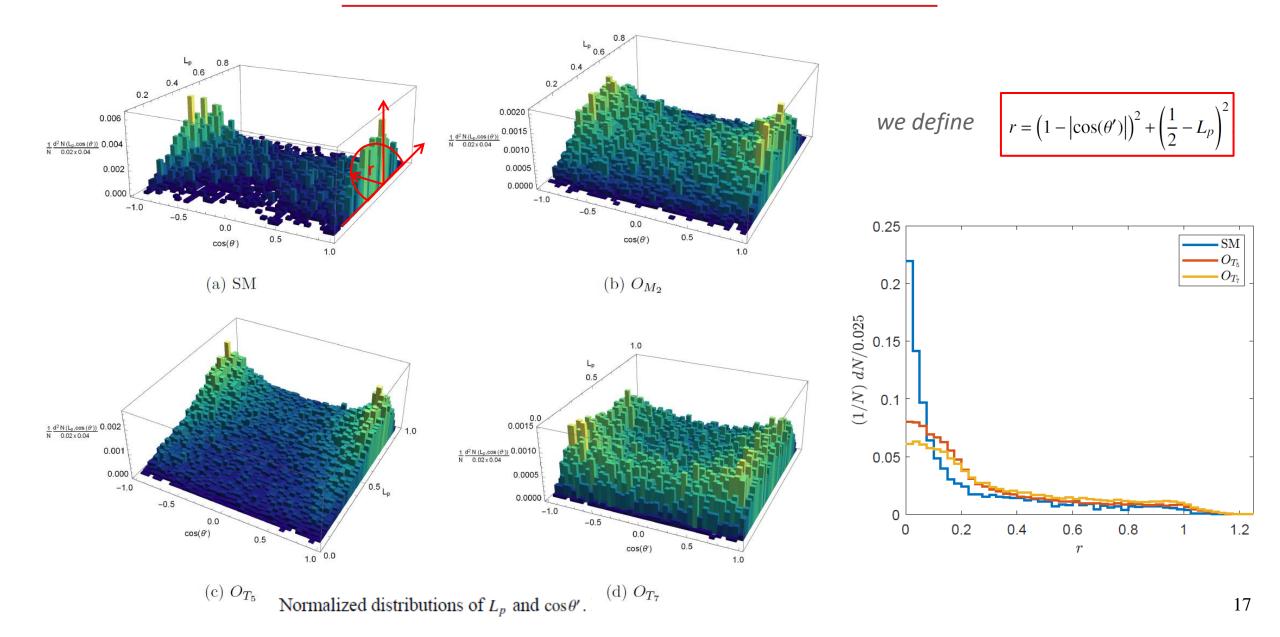
Table 4. Cross sections of SM backgrounds and signals for various operators after N_{j,γ,ℓ^+} , $\Delta \phi_{\ell m}$, $|\vec{p}_T^{\ell}|$, $|\vec{p}_T^{\text{miss}}|$, and \vec{s}_U cuts. The maximum \vec{s} used in the \vec{s}_U cuts are obtained using the upper bounds of f_X/Λ^4 in Table 1 and Eq. (17).


Channel/fb	no cut	N_{j,γ,ℓ^+}	$\Delta \phi_{\ell m}$	$ \vec{p}_T^\ell $	$ \vec{p}_T^{\mathrm{miss}} $	$\left \tilde{s}_{U} \right $
SM	9520.8	3016.6	211.7	65.1	40.6	
O_{M_2}	6.353	4.06	3.51	3.45	3.43	0.93
O_{M_3}	21.05	13.62	12.13	11.95	11.90	2.19
O_{M_4}	7.39	4.81	4.06	3.94	3.92	1.03
O_{M_5}	25.23	16.73	14.75	14.49	14.42	4.05
O_{T_5}	2.71	1.77	1.28	1.25	1.22	0.72
O_{T_6}	16.92	11.19	8.94	8.36	8.26	3.06
O_{T_7}	7.47	4.97	3.97	3.69	3.65	1.43

Polarization Feature

$\mathcal{M}(\gamma_+ W_0^+ \to \gamma W_0^+)$	$-\frac{f_{M_0}}{\Lambda^4} \frac{e^2 e^{i\varphi} v^2 \sin^4\left(\frac{\theta}{2}\right)}{8M_W^2} \hat{s}^2$
	$\frac{f_{M_1}}{\Lambda^4} \frac{e^2 e^{i\varphi} v^2 \sin^4\left(\frac{\theta}{2}\right)}{32M_W^2} \hat{s}^2$
$\mathcal{M}(\gamma_+ W_0^+ \to \gamma_+ W_0^+)$	$\frac{f_{M_1}}{\Lambda^4} \frac{e^2 e^{i\varphi} v (\cos(\theta) + 1)}{32M_W^2} \hat{s}^2$
$\mathcal{M}(\gamma_+ W_+^+ \to \gamma W^+)$	$2\frac{f_{T_0}}{\Lambda^4}s_W^2\sin^4\left(\frac{\theta}{2}\right)\hat{s}^2$
	$\frac{1}{2} \frac{f_{T_1}}{\Lambda^4} s_W^2 \left(\sin^4\left(\frac{\theta}{2}\right) + \left(\frac{\cos(\theta) + 3}{2}\right)^2 \right) \hat{s}^2$
	$\frac{1}{2} \frac{f_{T_2}}{\Lambda^4} s_W^2 \sin^4 \left(\frac{\theta}{2}\right) \hat{s}^2$
$\mathcal{M}(\gamma_+ W^+ \to \gamma W^+_+)$	$2\frac{f_{T_0}}{\Lambda^4}e^{2i\varphi}s_W^2\sin^4\frac{\theta}{2}\hat{s}^2$
	$\frac{\frac{1}{2}\frac{f_{T_2}}{\Lambda^4}e^{2i\varphi}s_W^2\sin^4\left(\frac{\theta}{2}\right)\hat{s}^2}{\hat{s}^2}$
$\mathcal{M}(\gamma W^+ \to \gamma W^+)$	$\frac{f_{T_1}}{\Lambda^4}s_W^2\hat{s}^2$
	$\frac{1}{2}\frac{f T_2}{\Lambda^4}s_W^2 \hat{s}^2$
$\mathcal{M}(\gamma_+ W^+ \to \gamma_+ W^+)$	$\frac{f_{T_1}}{\Lambda^4}e^{2i\varphi}s_W^2\cos^4\left(\frac{\theta}{2}\right)\hat{s}^2$
	$\frac{1}{2} \frac{f_{T_2}}{\Lambda^4} e^{2i\varphi} s_W^2 \cos^4\left(\frac{\theta}{2}\right) \hat{s}^2$
When p_{T_W} is large, \cos	$L(heta^*)pprox 2(L_p-1)$ with $L_p=rac{{f p}_T^\ell\cdot{f p}_T^W}{ {f p}_T^W ^2}$

[C. M. S. Collaboration, Phys. Rev. Lett. 107 (2011) 021802]


4 polarization fraction patterns : SM, O_{M_i} , $O_{T_{0,5}}$, $O_{T_{1,2,6,7}}$

O_{Mi}: longitudinal W⁺ bosons are dominant

 O_{Ti} : both left-handed and right-handed W⁺ bosons dominate.

Angular Distribution

Constraints on Dimension-8 Operators

Wyjj production

Zγjj production

	$300 {\rm ~fb}^{-1}$	3 ab^{-1}
f_{M_4}/Λ^4	[-15.0, 16.0]	[-1.8, 4.0]
f_{M_5}/Λ^4	[-12.5, 10.0]	[-3.0, 4.0]
f_{T_5}/Λ^4	[-0.40, 0.37]	[-0.09, 0.15]
f_{T_6}/Λ^4	[-1.0, 0.9]	[-0.4, 0.43]
f_{T_7}/Λ^4	[-1.7, 1.4]	[-0.7, 0.7]
f_{T_9}/Λ^4	[-0.55, 0.50]	[-0.15, 0.15]

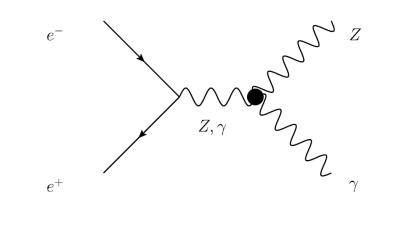

We thank Jian Wang and Cen Zhang for useful discussions.

Table 7.	Constraints on o	perators at LHC with	$\mathcal{L} = 137.1 \text{ fb}^{-1}$.
----------	------------------	----------------------	---

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Coefficients	$S_{\text{stat}} > 2$	Coefficients	$S_{\text{stat}} > 2$
f_{M_4}/Λ^4 [-11.25,4.0] f_{T_7}/Λ^4 [-0.65,0.7]	f_{M_2}/Λ^4	[-2.05, 2.0]	f_{T_5}/Λ^4	[-0.525, 0.37]
	f_{M_3}/Λ^4	[-10.5, 5.25]	f_{T_6}/Λ^4	[-0.4, 0.425]
f_{12} (A4 [625 60]	f_{M_4}/Λ^4	[-11.25,4.0]	f_{T_7}/Λ^4	[-0.65, 0.7]
$\int M_5 / \Lambda$ [-0.23, 0.0]	f_{M_5}/Λ^4	[-6.25, 6.0]		

III. Study nTGC and aQGC at Future Lepton Colliders

• nTGC in the $e^+ e^- \rightarrow Z\gamma$ process

$$\mathcal{L}_{nTGC} = \frac{\operatorname{sign}(c_{\tilde{B}W})}{\Lambda_{\tilde{B}W}^4} \mathcal{O}_{\tilde{B}W} + \frac{\operatorname{sign}(c_{B\tilde{W}})}{\Lambda_{B\tilde{W}}^4} \mathcal{O}_{B\tilde{W}} + \frac{\operatorname{sign}(c_{\tilde{W}W})}{\Lambda_{\tilde{W}W}^4} \mathcal{O}_{\tilde{W}W} + \frac{\operatorname{sign}(c_{\tilde{B}B})}{\Lambda_{\tilde{B}B}^4} \mathcal{O}_{\tilde{B}B}$$

$$\begin{split} \mathcal{O}_{\tilde{B}W} &= i H^{\dagger} \tilde{B}_{\mu\nu} W^{\mu\rho} \left\{ D_{\rho}, D^{\nu} \right\} H + h.c., \\ \mathcal{O}_{B\tilde{W}} &= i H^{\dagger} B_{\mu\nu} \tilde{W}^{\mu\rho} \left\{ D_{\rho}, D^{\nu} \right\} H + h.c., \\ \mathcal{O}_{\tilde{W}W} &= i H^{\dagger} \tilde{W}_{\mu\nu} W^{\mu\rho} \left\{ D_{\rho}, D^{\nu} \right\} H + h.c., \\ \mathcal{O}_{\tilde{B}B} &= i H^{\dagger} \tilde{B}_{\mu\nu} B^{\mu\rho} \left\{ D_{\rho}, D^{\nu} \right\} H + h.c., \end{split}$$

Chinese Physics C Vol. 44, No. 6 (2020) 063106

Probing the scale of new physics in the $ZZ\gamma$ coupling at e^+e^- colliders*

John Ellis^{1,2;1)} Shao-Feng Ge^{2;2)} Hong-Jian He^{2,3;3)} Rui-Qing Xiao^{2;4)}

¹Department of Physics, Kings College London, Strand, London WC2R 2LS, UK; Theoretical Physics Department, CERN, CH-1211 Geneva 23, Switzerland; NICPB, Rävala 10, 10143 Tallinn, Estonia ²Tsung-Dao Lee Institute & School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China ³Institute of Modern Physics, Tsinghua University, Beijing 100084, China; Center for High Energy Physics, Peking University, Beijing 100871, China

Probing new physics in dimension-8 neutral gauge couplings at e^+e^- colliders

John Ellis 🖾, Hong-Jian He 🖾 & Rui-Qing Xiao 🖾

<u>Science China Physics, Mechanics & Astronomy</u> **64**, Article number: 221062 (2021) | <u>Cite this article</u> **142** Accesses | **24** Citations | <u>Metrics</u>

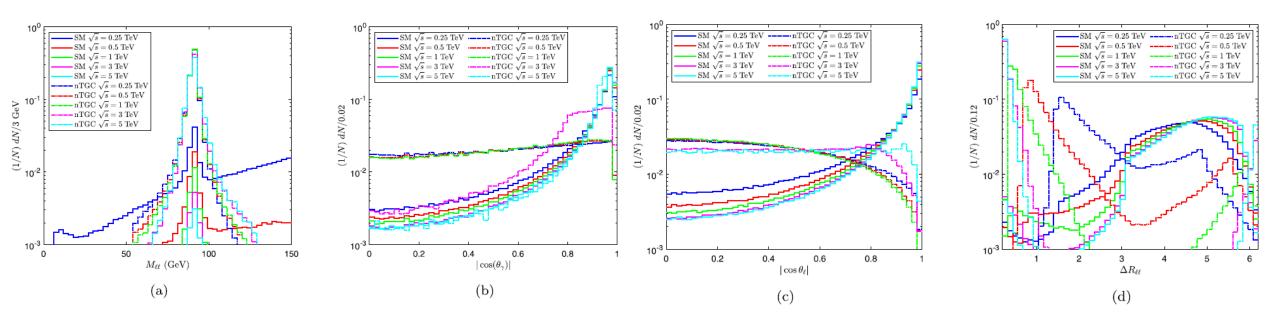
The Partial Wave Unitarity Bound

 $\Lambda_{\tilde{B}W} \text{ (GeV)}$

> 49.4

> 85.4

> 330.0

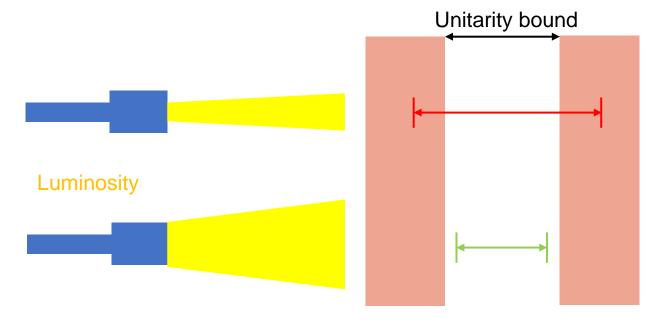

> 484.2

> 144.5

 \sim -

20

Constraints for Dimension-8 Operators


The expected constraints on sign(c_{BW})/ Λ_{BW}^4 (TeV⁻⁴) at $\mathcal{L} = 2 \text{ ab}^{-1}$ for hadronic Z decays.

S_{stat}	\sqrt{s} (GeV)				
	250 G	500	1000	3000	5000
2	[-10.5, 76.9]	[-1.0, 14.8]	[-0.35, 1.3]	[-0.030, 0.064]	[-0.013, 0.013]
3	[-14.9, 81.3]	[-1.5, 15.2]	[-0.48, 1.4]	[-0.040, 0.074]	[-0.016, 0.016]
5	[-22.7, 89.1]	[-2.3, 16.1]	[-0.69, 1.6]	[-0.055, 0.089]	[-0.020, 0.020]

Inspiration from nTGC research in $e^+e^- \rightarrow Z\gamma$

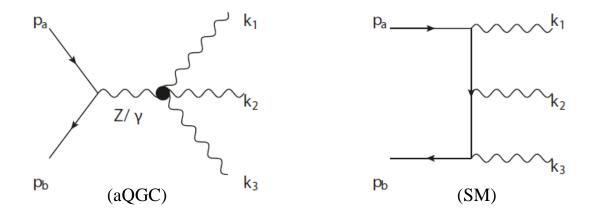
Nucl. Phys. B 972 (2021) 115543

The unitarity bounds tell us the minimum integrated luminosity required to study nTGC and aQGC

Constraint on coefficient of operator

Unlike VBS, the diboson induced by nTGC and the triphoton induced by aQGC are suppressed by a propagator for large s, so the unitarity constraint is only relevant at very low luminosity.

• Tri-photon at Future Muon Colliders


JHEP 07 (2022) 053

Advantages of the muon collider:

- High energy
- High integrated luminosity
- Cleaner environment
- Enhances the annihilation process

than pp collider

$$\mu^+\mu^- \to Z^*/\gamma^* \to \gamma\gamma\gamma$$

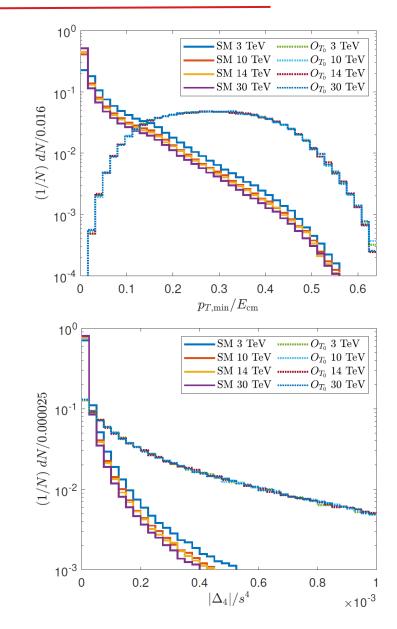
Only O_{Ti} operators are relevant of tri-photon

$$\begin{split} O_{T_0} &= \operatorname{Tr} \left[\widehat{W}_{\mu\nu} \widehat{W}^{\mu\nu} \right] \times \operatorname{Tr} \left[\widehat{W}_{\alpha\beta} \widehat{W}^{\alpha\beta} \right], \quad O_{T_1} = \operatorname{Tr} \left[\widehat{W}_{\alpha\nu} \widehat{W}^{\mu\beta} \right] \times \operatorname{Tr} \left[\widehat{W}_{\mu\beta} \widehat{W}^{\alpha\nu} \right], \\ O_{T_2} &= \operatorname{Tr} \left[\widehat{W}_{\alpha\mu} \widehat{W}^{\mu\beta} \right] \times \operatorname{Tr} \left[\widehat{W}_{\beta\nu} \widehat{W}^{\nu\alpha} \right], \quad O_{T_5} = \operatorname{Tr} \left[\widehat{W}_{\mu\nu} \widehat{W}^{\mu\nu} \right] \times B_{\alpha\beta} B^{\alpha\beta}, \\ O_{T_6} &= \operatorname{Tr} \left[\widehat{W}_{\alpha\nu} \widehat{W}^{\mu\beta} \right] \times B_{\mu\beta} B^{\alpha\nu}, \qquad O_{T_7} = \operatorname{Tr} \left[\widehat{W}_{\alpha\mu} \widehat{W}^{\mu\beta} \right] \times B_{\beta\nu} B^{\nu\alpha}, \\ O_{T_8} &= B_{\mu\nu} B^{\mu\nu} \times B_{\alpha\beta} B^{\alpha\beta}, \qquad O_{T_9} = B_{\alpha\mu} B^{\mu\beta} \times B_{\beta\nu} B^{\nu\alpha}, \end{split}$$

Compare Annihilation Process with VBS Processes

$$\begin{split} \mu^{+}\mu^{-} & \rightarrow V_{1}V_{2}V_{3} \quad (\text{annihilation}), \\ \mu^{+}\mu^{-} & \rightarrow ff'V_{1}V_{2} \quad (\text{VBS}), \\ \\ \frac{\sigma_{\text{VBF}}^{\text{BSM}}}{\sigma_{\text{ann}}^{\text{BSM}}} \propto \alpha_{W}^{2} \frac{s}{m_{X}^{2}} \log^{2}\left(\frac{s}{m_{V}^{2}}\right) \log\left(\frac{s}{m_{X}^{2}}\right), \\ \text{[H. AI All et al., Rept.Prog.Phys. 85 (2022) 8, 084201]} \\ \\ \mu^{+}\mu^{-} & \rightarrow \gamma\gamma\nu\bar{\nu} \text{ for illustration and take } O_{T_{5}} \text{ as an example} \\ \\ \sigma_{\text{VBS}} & = \frac{e^{4}f_{T_{5}}^{2}s^{3}\left(1-s_{W}^{2}\right)^{2} \left[20 \log\left(\frac{s}{(16M_{W}^{2})}\right)\left(30 \log\left(\frac{s}{(16M_{W}^{2})}-67\right)+943\right]}{110592000\pi^{5}\Lambda^{8}s_{W}^{4}}, \\ \\ \sigma_{\text{triboson}} & = \frac{e^{2}f_{T_{5}}^{2}s^{3}\left(48s_{W}^{8}-64s_{W}^{6}+40s_{W}^{4}-12s_{W}^{2}+3\right)}{138240\pi^{3}\Lambda^{8}s_{W}^{2}\left(s_{W}^{2}-1\right)} \times \text{Br}(Z \rightarrow \nu\bar{\nu}). \quad 10^{2} \end{split}$$

The Contribution of aQGC to Tri-photon Process


$$\sigma_{\mathrm{aQGC}}(f_{T_i}) = \sigma_{\mathrm{SM}} + \sigma_{O_{T_i}}(f_{T_i}) + \sigma_{\mathrm{int}}(f_{T_i})$$

_		$3\mathrm{TeV}$	$10 \mathrm{TeV}$	$14\mathrm{TeV}$	$30\mathrm{TeV}$
	$\sigma_{\rm SM} ({\rm fb})$	5.96	0.707	0.383	0.0953

$$\sigma_{\rm int} = \frac{e^4 s (384 \log(2) - 215) \left((1 - 4s_W^2) (4\alpha_1 + 3\alpha_2) + 16c_W s_W (4\alpha_3 + 3\alpha_4) \right)}{110592\pi^3 \Lambda^4 c_W s_W},$$

$$\sigma_{O_{T_i}} = \frac{e^2 s^3}{276480\pi^3 \Lambda^8 c_W^2 s_W^2} \left(8c_W s_W (1 - 4s_W^2) (16\alpha_1\alpha_3 + 7\alpha_1\alpha_4 + 7\alpha_2\alpha_3 + 4\alpha_2\alpha_4) \right. \\ \left. + (1 - 4s_W^2 + 8s_W^4) \left(8\alpha_1^2 + 7\alpha_1\alpha_2 + 2\alpha_2^2 \right) + 128c_W^2 s_W^2 \left(8\alpha_3^2 + 7\alpha_3\alpha_4 + 2\alpha_4^2 \right) \right),$$

$$\begin{aligned} \alpha_1 &= c_W^3 s_W (f_{T_5} + f_{T_6} - 4f_{T_8}) + c_W s_W^3 (f_{T_0} + f_{T_1} - f_{T_5} - f_{T_6}), \\ \alpha_2 &= c_W^3 s_W (f_{T_7} - 4f_{T_9}) + c_W s_W^3 (f_{T_2} - f_{T_7}), \\ \alpha_3 &= c_W^4 f_{T_8} + \frac{1}{2} c_W^2 s_W^2 (f_{T_5} + f_{T_6}) + \frac{1}{4} s_W^4 (f_{T_0} + f_{T_1}), \\ \alpha_4 &= c_W^4 f_{T_9} + \frac{1}{2} c_W^2 f_{T_7} s_W^2 + \frac{f_{T_2} s_W^4}{4}. \end{aligned}$$

Constraints on Dimension-8 Operators

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	V
	-1
$\left \mathcal{S}_{\text{stat}} \right (10^{-2} \text{TeV}^{-4}) \left (10^{-4} \text{TeV}^{-4}) \right (10^{-4} \text{TeV}^{-4}) \left (10^{-5} \text{TeV}^{-4}) \right $	$V^{-4})$
2 [-43.49, 14.47] t [-35.72, 12.19] [-10.14, 4.09] [-6.19, 3] t = 10000000000000000000000000000000000	8.30]
$\frac{f_{T_0}(f_{T_1})}{\Lambda^4} = 3 = \begin{bmatrix} -48, 57, 19.55 \end{bmatrix} = \begin{bmatrix} -39.98, 16.45 \end{bmatrix} = \begin{bmatrix} -11.50, 5.46 \end{bmatrix} = \begin{bmatrix} -7.21, 48, 57, 19.55 \end{bmatrix} = \begin{bmatrix} -7.21, 48, 57, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19$.32]
5 [-57.08, 28.06] [-47.10, 23.57] [-13.77, 7.73] [-8.92, 6]	6.03]
2 [-108.0, 22.66] [-87.71, 19.31] [-24.37, 6.62] [-14.06,	5.65]
$\frac{f_{T_2}}{\Lambda^4} \qquad 3 \qquad [-116.9, 31.59] \qquad [-95.25, 26.85] \qquad [-26.85, 9.09] \qquad [-16.00,$	7.58]
5 [-132.4, 47.06] [-108.3, 39.87] [-31.08, 13.32] [-19.27, 10.08]	0.86]
2 [-10.78, 2.61] [-8.81, 2.22] [-2.45, 0.758] [-1.44, 0]	.638]
$\frac{f_{T_5}(f_{T_6})}{\Lambda^4} = 3 \qquad [-11.78, 3.61] \qquad [-9.65, 3.05] \qquad [-2.72, 1.03] \qquad [-1.65, 0.65]$.846]
5 $[-13.49, 5.32]$ $[-11.08, 4.49]$ $[-3.19, 1.50]$ $[-2.01, 100]$	20]
2 [-27.54, 3.98] [-22.47, 3.38] [-6.17, 1.17] [-3.41, 1]	04]
$\frac{f_{T_7}}{\Lambda^4} \qquad 3 \qquad [-29.22, 5.66] \qquad [-23.89, 4.80] \qquad [-6.64, 1.65] \qquad [-3.79, 1]$.43]
5 [-32.22, 8.66] [-26.42, 7.32] [-7.48, 2.48] [-4.46, 2.48]	2.10]
$2 \qquad [-1.74, 0.42] \qquad [-1.42, 0.355] \qquad [-0.399, 0.121] \qquad [-0.233, $	0.102]
$\frac{f_{T_8}}{\Lambda^4} \qquad 3 \qquad [-1.90, 0.58] \qquad [-1.56, 0.490] \qquad [-0.443, 0.165] \qquad [-0.267, $).136]
5 $[-2.17, 0.86]$ $[-1.79, 0.721]$ $[-0.518, 0.239]$ $[-0.325, 0.239]$).193]
2 [-4.50, 0.63] [-3.66, 0.538] [-1.00, 0.188] [-0.553, 0.538]	0.167]
$\frac{f_{T_9}}{\Lambda^4} \qquad 3 \qquad [-4.77, 0.90] \qquad [-3.89, 0.765] \qquad [-1.07, 0.264] \qquad [-0.615, 0.90]$	0.229]
5 $[-5.25, 1.38]$ $[-4.29, 1.17]$ $[-1.21, 0.399]$ $[-0.723, 0.399]$).337]

Summary

- Search for new physics indirectly as well as directly
- SMEFT is an effective, model-independent tool for probing indirectly possible BSM physics
- Physics at Dimension-8 provide windows of opportunity
- The unitarity bound is important when applying SMEFT
- Polarization and machine learning technology are powerful tools in the search for new physics

... the *direct* method may be used for joining battle, but *indirect* methods will be needed in order to secure victory.

The *direct* and the *indirect* lead on to each other in turn. It is like moving in a circle — you never come to an end. Who can exhaust the possibilities of their combination?

Sun Tzu, The Art of War

Thank you !

