

Study of charm Yukawa couplings at the ATLAS detector

Tao Wang

University of Science and Technology of China, Aug. 10th, 2022 中国物理学会高能物理分会第十一届全国会员代表大会暨学术年会

Introduction

- In the Standard Model, Higgs-fermion Yukawa interaction generates mass for fermions, and the coupling constant is proportional to fermion mass
- Coupling between Higgs boson and all 3rd generation quarks has been measured
- For the 2nd generation quarks, the Yukawa coupling is still not measured, yet not confirmed, in which the charm Yukawa coupling is the largest
- Measuring charm Yukawa coupling with good precision can proof source of second-generation quark mass for the first time and potentially constraint some BSM phenomenon

Current charm Yukawa coupling measurement

- Higgs coupling to charm quarks (κ_c^*) can be constrained directly or indirectly:
 - Direct: constrain with H \rightarrow cc via VH(cc) measurement, $|\kappa_c| < 8.5$ @95% CL (Run II) **
 - Indirect: constraint from p_T spectrum of H(ZZ) and H($\gamma\gamma)$ ***

*: κ_c is the coupling modifier for charm Yukawa coupling

**: assume κ_c can only modify H \rightarrow cc branch fraction

***: consider only κ_c can modify the Higgs p_T shape $\rightarrow \kappa_c \in [-8.6, 17.3]$ @95% CL; only κ_c can modify Higgs p_T shape and normalization $\rightarrow \kappa_c \in [-2.3, 2.3]$ @95% CL

VH(cc) – Direct constraint on κ_c

- VH(cc) channel is by far the most utilized channel to measure Higgs to charm decay directly
 - Utilizing the leptonic decay product of the vector boson, QCD backgrounds can be well suppressed
 - Channels: OL ($Z \rightarrow VV$), 1L ($W \rightarrow VI$), 2L ($Z \rightarrow II$)
 - Fitting on $m_{\rm CC}$, the di-jet invariant mass
 - Main backgrounds:
 - Z+jets
 - W+jets
 - ttbar and single top
 - Key points
 - Good modelling of backgrounds
 - Charm tagging
 - Current working point in ATLAS latest result c-jets (27%), b-jets (8.3%), light-jets (1.7%)

Feynman diagram for VH(cc)

SRs and CRs

- In order to increase the sensitivity, a series of SRs has been carefully defined (16 SRs in total)
- To be able to constrain the backgrounds better, several control regions has been defined (28 CRs in total)

Direct constraint on $\mu_{VH(cc)}$

- Observed VH(cc) limit of 26 x SM (31 x SM expected)
 - Highest sensitivity in 0 lepton channel
 - Dominated by statistics, for systematic uncertainty, Z+jets modelling uncertainty is dominant

Less sensitive than CMS newest result because: 1. no machine learning technique applied; 2. boosted channel is not included

Direct constraint on κ_c

• κ framework is used to set limit on κ_c instead of VH(cc) signal strength

1 lepton candidate event W(ev)H(cc)

INP

Run: 329964 Event: 500775771 2017-07-18 06:31:13 CEST

$p_T(H)$ measurement – Indirect constraint on κ_c

- κ_c can be constrained in two ways via the $p_T(H)$ measurement
 - Shape of the differential cross section $1/\sigma d\sigma/d(pT(H))$ depends on κ_c (and can also depend on κ_b)
 - Overall normalization of $H \rightarrow ZZ/\gamma\gamma$ is proportional to $1/\kappa_H^2$ and κ_H depends on κ_c (and can also depend on κ_b) \Longrightarrow Additional input from VH(bb/cc) is needed to disentangle κ_b and κ_c

Combining direct and indirect measurements

Resolved κ_H as function of κ_b , κ_c , BR_{BSM}:

Decay branch ratio to the rest final states

$$\kappa_{H}^{2}(\kappa_{c},\kappa_{b},\mathrm{BR}_{\mathrm{BSM}}) = \frac{\mathrm{BR}_{\mathrm{cc}}\kappa_{c}^{2} + \mathrm{BR}_{\mathrm{bb}}\kappa_{b}^{2} + \mathrm{BR}_{\gamma\gamma}\kappa_{\gamma}^{2}(\kappa_{c},\kappa_{b}) + \mathrm{BR}_{\mathrm{gg}}\kappa_{g}^{2}(\kappa_{c},\kappa_{b}) + \mathrm{BR}_{Z\gamma}\kappa_{Z\gamma}^{2}(\kappa_{c},\kappa_{b}) + \left[1 - \mathrm{BR}_{\mathrm{cc}} - \mathrm{BR}_{\mathrm{bb}} - \mathrm{BR}_{\gamma\gamma} - \mathrm{BR}_{\mathrm{gg}} - \mathrm{BR}_{Z\gamma}\right]}{1 - \mathrm{BR}_{\mathrm{BSM}}}$$

- Case 1: float BR(H→BSM), 3POIs (κ_c, κ_b, BR_{BSM}) in total, which has less assumption on Higgs total width
- Case 2: set BR($H \rightarrow BSM$)=0
 - Can give tighter constraint with the sacrifice of less model independency

Results after combination

2D negative log likelihood contours for κ_b and κ_c

1D confidence interval for κ_c with κ_b profiled:

- $\kappa_c \in [-4.5, 4.8]$ @95% CL if H \rightarrow BSM is allowed
- $\kappa_c \in [-2, 5, 2, 5]$ @95% CL if only $H \rightarrow SM$ is allowed

Very stringent limit on κ_c

Summary

- Measuring charm Yukawa coupling with good precision will proof the source of second-generation quark mass for the first time
- The current measurement on charm Yukawa coupling can be performed either directly or indirectly, with the direct way utilizing VH(cc) channel and the indirect way using Higgs p_T spectrum and overall normalization to set constrain
- By combining the direct and indirect approaches, we've been able to achieve very stringent limit on κ_c (κ_c ∈ [-4.5,4.8] @95% CL with relatively small assumption on Higgs total width)
- Given the aim for measuring charm Yukawa coupling to the observation of charm Yukawa coupling, we are just at the starting point, a journey still awaits

A JOURNEY AWAITS