Measurement of boosted $VH(H \rightarrow b\overline{b})$ process with the ATLAS experiment

Yicong Huang

University of Science and Technology of China

August 10, 2022

Introduction

- Higgs boson: discovered in 2012 by the ATLAS and the CMS experiments.
- SM predicted Higgs boson: spin-0, $J^P = 0^+$, with a free parameter in its mass.
 - Measured mass: $125.09 \pm 0.24 \text{ GeV}$ Phys. Rev. Lett. 114 (2015) 191803
- Major Higgs production modes at the Large Hadron Collider (LHC)

$H \rightarrow b\overline{b}$ decay

- $H \rightarrow b\overline{b}$ was not observed in Run 1 (all hadronic final state through ggF).
- Best channel to study the Yukawa nature of Higgs coupling to fermions directly.
 - largest BR: 58.2% for $m_{\rm H}$ = 125 GeV.

$$\mathcal{L}_{\text{Yukawa}} = y_{ij} \psi_i \phi \psi_j + \text{h.c.} \quad H \cdots \left(\int_f^f g \propto m_f \right)$$

• The most sensitive production modes for detecting $H \rightarrow b\overline{b}$: *VH* production

- *W*/*Z* boson decays leptonically
- Three channels, 0-lepton, 1-lepton, 2-lepton
- Increased energy of LHC Run 2 enabled sufficient VH statistics.
 - Full Run 2 data, 139 fb⁻¹ integrated luminosity

High energy phase space

- Two keys to look for potential anomalous couplings:
 - Precision
 - High energy

ATL-PHYS-PUB-2019-042

Use energy growth to probe regimes comparable to the ones accessible in experiments with much higher precision level.

Impacts of D-6 operators on leptonic ZH production

• $VH(H \rightarrow b\overline{b})$ produced at high transverse momentum phase space

VH(bb) boosted overview

• Strategy of the *VH*(*bb*) boosted analysis

- Two *b*-jets merge into a large-*R* jet.
- Medium to high p_{T}^{V} region.
- For *VH*(*bb*) boosted analysis
 - Reconstruct Higgs decay products as a large-*R* jet.
 - At least two track jets matched to the large-*R* jet.
 - Two matched track jets being *b*-tagged

Baseline event selection

• 0 VH-loose lepton

*p*_T^V > 250 GeV for all three channels

- 2 VH-loose leptons, at least 1 ZH-signal lepton, p_T > 27 GeV
- Opposite sign required for μ channel

Baseline event selection

Suppress multijets in 0L channel:

- $\Delta \varphi(\boldsymbol{E}_{T}^{\text{miss}}, \text{large-}R \text{ jet}) > 120^{\circ}$
- $\Delta \varphi(\boldsymbol{E}_{\mathrm{T}}^{\mathrm{miss}}, \boldsymbol{p}_{\mathrm{T}}^{\mathrm{miss}}) < 90^{\circ}$
- min[$\Delta \varphi(\boldsymbol{E}_{T}^{\text{miss}}, \text{ calo jets}^*)$] > 30°

*small-*R* calo. jets (PFlow or Topo, R = 0.4), $p_T > 70$ GeV, $|\eta| < 4.5$, not matched to leading fat jet

Suppress *V*+jets in 1L and 2L channel:

• $\Delta Y(V, \text{ large-}R \text{ jet}) < 1.4$

Further suppress *Z*+jets in 2L channel:

- $[p_{\rm T}(l_1) p_{\rm T}(l_2)]/p_{\rm T}(Z) < 0.8$
- *Z*-mass window: 66-116 GeV

Z boson polarization is different between VH and Z+jets

Selection of Higgs candidate

B-tagging: identifying jets originating from *b*-hadrons

- B-hadron lifetime $\tau \sim 1.5$ ps, $L = \beta \gamma c \tau \sim 450 \ \mu m$
- Algorithms: ATL-PHYS-PUB-2017-013
 - Low level: reconstruct tracks associated to jets and find secondary vertices
 - High level: combine low level results using multivariate classifiers
- MV2 tagger at 70% *b*-tagging efficiency

- At least 1 large-*R* jet
- At least 2 track jets being associated to the leading large-*R* jet
- B-tagging strategy
 - The 2 leading track jets being *b*-tagged

Event categorization

The events are categorized to further increase sensitivity.

$p_{\rm T}^{~\rm V}$ categorization

- $250 < p_{\rm T}^{\rm V} < 400 {\rm GeV}$
- $p_{\rm T}^{\rm V} > 400 {\rm ~GeV}$

Event categorization

Only in 0/1L channel:

• B-tag categories

Events / 40 GeV

 10^{4}

 10^{3}

10²

10

1.5

0.5

250

300

Data/Pred.

- Signal region: no *b*-tagged track jet outside the large-*R* jet.
- top control region: at least 1 *b*-tagged track jets outside the large-*R* jet.

ATLAS Preliminary

0 lep., ≥ 1 large-R jets, top CR

√s = 13 TeV, 139 fb⁻¹

p^{*V*} ≥ 250 GeV

Data

WW

Wt

W+jets

Uncertainty

500

550

E^{miss} [GeV]

600

- VH, H \rightarrow bb \times 140

Z+jets

450

400

350

tī

VZ (μ=0.92)

t, s+t chan

VH, H \rightarrow bb (μ =0.71)

USTC Y.Huang

Data/Pred.

Events / 40 GeV

Event categorization

Only in 0/1L channel:

- Calo-jets multiplicity categories
 - high purity SR: 0 add. small-*R* jet
 - low purity SR: \geq 1 add. small-*R* jets

"additional small-*R* jets": $p_T > 30$ GeV small-*R* jets not matched to the leading large-*R* jet.

Channel	Categories					
	$250 \text{ GeV} < p_{\text{T}}^{V} < 400 \text{ GeV}$			$p_{\rm T}^V > 400 { m ~GeV}$		
	0 add. <i>b</i> -tagged track-jet		≥ 1 add.	0 add. b-tagged track-jet		≥ 1 add.
	0 add. small- <i>R</i> jet	≥ 1 add. small- <i>R</i> jets	track-jets	0 add. small- <i>R</i> jet	≥ 1 add. small- <i>R</i> jets	track-jets
0L	HP SR	LP SR	top CR	HP SR	LP SR	top CR
1L	HP SR	LP SR	top CR	HP SR	LP SR	top CR
2L	SR			SR		

Statistical analysis

Binned profile likelihood fit to m_1 in all the SRs and CRs.

$$L(\mu, \theta, \gamma) = \prod_{i=1}^{n_{\text{bins}}} \text{Pois}\left(N_i | \mu \cdot s_i \cdot \nu_s(\theta) + \gamma_i b_i \cdot \nu_b(\theta)\right) \quad \text{Poisson likelihood}$$

$$\cdot \prod_{j=1}^{n_{\text{syst}}} \text{Gauss}(\theta_j | 0, 1) \cdot \prod_{i=1}^{n_{\text{bins}}} \text{Gauss}\left(\beta_i | \gamma_i \beta_i, \sqrt{\gamma_i \beta_i}\right)$$

Constraint exp/modeling unc.

Constraint MC stat. unc.

- μ signal strength
- γ NPs for uncertainties due to limited MC statistics
- θ NPs for experimental and modeling uncertainties
- 2 parameters of interest (POI): Signal strengths of *VH* (μ_{VH}) and *VZ* (μ_{VZ})
- Systematic uncertainties:
 - Experimental: large-*R* / small-*R* jet scale, resolution, leptons, E_T^{miss} , *b*-tagging ...
 - Modeling: normalization, acceptance, shape ...
 - Main backgrounds $t\bar{t}$, V+heavy flavor, free floated in the fit

large-*R* jet mass: 0L

Events / 10 GeV

Events / 10 GeV

Data/Pred.

 $p_{\rm T}{}^{\rm V} > 400 {\rm ~GeV}$

 $250 < p_{\rm T}^{\rm V} < 400 {\rm ~GeV}$

low purity SR

top CR

📥 Data

tŤ

Wt

W+jets

Z+jets

-- Data

VZ

tī

Wt

W+jets

Z+jets

W Uncertainty

- VH, $H \rightarrow b\overline{b} \times 10$

Uncertainty

- VH, $H \rightarrow b\overline{b} \times 30$

200 220

VH, $H \rightarrow b\overline{b}$ (u=1.00)

m_.[GeV]

WH, H \rightarrow bb (μ =1.00)

Y.Huang USTC

220 240

m₁[GeV]

large-*R* jet mass: 1L

1L: high purity SR

low purity SR

top CR

large-*R* jet mass: 2L

2L: 250 < $p_{\rm T}^{V}$ < 400 GeV

 $p_{\rm T}^{V} > 400 {\rm ~GeV}$

Main background after event selection: 0L: *Z***+jets**, *W***+jets**, *tt* 1L: *tt*, *W***+jets**, **single top** 2L: *Z***+jets**, **diboson**

OL post-fit results

0L: high purity SR

low purity SR

top CR

USTC Y.Huang m₁[GeV]

m₁[GeV]

1L and 2L post-fit results

VH(*bb*) boosted results

Fitted value of VH (VZ) signal strength

$$\mu_{VH}^{bb} = 0.72_{-0.36}^{+0.39} = 0.72_{-0.28}^{+0.29} (\text{stat.})_{-0.22}^{+0.26} (\text{syst.})$$
$$\mu_{VZ}^{bb} = 0.91_{-0.23}^{+0.29} = 0.91 \pm 0.15 (\text{stat.})_{-0.17}^{+0.25} (\text{syst.})$$

Significance of VH signal: 2.1 σ (observed), 2.7 σ (expected)

Significance of VZ: 5.4 σ (observed), 5.7 σ (expected)

Conclusion

- First measurement of Higgs decays using large-*R* jet.
 - Nice sensitivity in high transverse momentum phase space.
 - Analysis strategy suitable for $p_{_{\rm T}}$ > 400 GeV particularly.
 - All results are compatible with the SM predictions.

Backup

Beyond the Standard Model

- Model-independent approach: Effective Field Theory (EFT)
 - The SM: low energy approximation of a more generic model
 - Effects of new physics show up at energy scale Λ

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \frac{1}{\Lambda} \mathcal{L}_{5} + \frac{1}{\Lambda^{2}} \mathcal{L}_{6} + \frac{1}{\Lambda^{3}} \mathcal{L}_{7} + \frac{1}{\Lambda^{4}} \mathcal{L}_{8} + \dots$$
Wilson coefficients
0 in the SM
$$\int_{i}^{i} \frac{c_{i}^{(6)}}{\Lambda^{2}} O_{i}^{(6)} = \int_{i}^{i} \frac{c_{i}^{(6)}}{\Lambda^{2}} O_{i}^{(6)} =$$

• Cross sections interpreted in the EFT approach

$$\frac{\sigma_{\rm EFT}}{\sigma_{\rm SM}} = 1 + \sum_{i} A_i c_i + \sum_{ij} B_{ij} c_i c_j, \quad \frac{\Gamma_{\rm EFT}}{\Gamma_{\rm SM}} = 1 + \sum_{i} \alpha_i c_i + \sum_{ij} \beta_{ij} c_i c_j$$

- A_i , B_{ij} , α_i , β_{ij} can be calculated from Monte-Carlo simulation.
- Wilson coefficients need to be constrained in experiment.

a