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Baryon Asymmetry of the Universe
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from Planck satellite [1]
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Figure from Kaori1 Fuyuto [2]



Baryon Asymmetry of the Universe

Sakhorov’s criteria
1. Baryon number violating process,
Generate p .
Triangle Anomoly
2. C and CP violations,
( - +)z ( - + ), LandR
CKM
3. Out of equilibrium.
( - +)= (+ - )
Electroweak phase transition

to explain the observed BAU within the

SM.



Baryon Asymmetry of the Universe

Potential solutions:

1. GUT baryogenesis

2. Electroweak baryogenesis,

3. The Affleck-Dine mechanism
4. Leptogenesis

We focus on the due to the
problems.




Origin of the Neutrino Masses

from Planck satellite [1]

https://physicsworld.com/a/daya-bay- From Hitoshi Murayama
nails-neutrino-oscillation/
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Origin of the Neutrino Masses

Seesaw mechanism

The lightness of the observed neutrinos 1s explained by
heavy right-handed neutrinos, with = 10'* GeV to
make  natural.

can exists 1n the



Leptogenesis

BAU from neutrino!

1. Lepton number 1s violated within the neutrino
masses terms.

2. can exists in the

3. Right-handed neutrinos decay out of equilibrium
potentially.

And EW sphaleron to transfer 5 into , during EW
phase transition,
28

~ 79



Leptogenesis

is the CP asymmetry in 1 decay,
comes from the interference between the tree-level
and one loop amplitude.

Hierarchical RH neutrinos,
-15
10 15
As —~0.1, 107, so

1073 x X 10710,

Resonant leptogenesis (what we focus on)
if

,as /A [.

1
> only needs



B-L. Model

Natural Seesaw mechanism 1f B-L number 1s gauged

Where 1is the vev of the B-L Higgs. RH neutrinos

masses are generated via the spontaneous symmetry
breaking of the (1) _ .

Additional might
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Figure from Ref. [3]
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Boltzmann Equations

Corrections on the Boltzmann equations,




BAU and CP Violations

The scattering mediated via

makes the NV

10

The BAU 1s diluted due to the scatterings.
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Signatures at Colliders

Muon COlliderS . Figure from 1901.06150

Effective collision energy

Compared to the ™ “machine: Y me

Synchrotron radiation is suppressed by 10, hence
the collision energy can reach O(10) TeV;

Also very clean, as long as the beam-induced-
background 1s controllable (main challenge).

Compared to the pp machine:

The entire collision energy can be used to probe
hard process;

Much cleaner due to the small QCD background.



Signatures at Colliders

The same processes are detectable at colliders.
fo N?

ZI

o NI

correspondsto () - () -

The CP violations can be measured by the
signatures from the decays,



Signatures at Colliders

Same-sign dileptons from RH neutrinos decay
( )- () - S TE+ (jets)
( - ¥ 7)=25%for ~0
CP violations from the final states
TC - =T - T )
BT E G

The limits are put assuming the number of signal
events follows a Poisson distribution.

We only focus on the interacts with the
and
. (D1scussions on the other s can be

seen at Ref. [4])




Signatures at Colliders

mainly arise from leptonic final states with charge
misidentification. The rate 1s —~0.1% at the current

Trigger cut [fb] Same-sign lepton [fb] W-jet [fb]

15 Backgrounds
LHC.
LHC
Sigljal

10 TeV muon collider

Signal

ptp —ete WHW-
ptp= —wete WHW-—~/Z
prp - WHW-jj

~ 10 ~10~7 ~107*
~ 107 (%) <1077 <1010
<1072 <1074 <1077
Trigger cut [fb] Same-sign lepton [fb] W-jet [fb]
~1 ~1 ~ 1071
~ 1072 ~ 1077 ~ 1076
~ 1072 ~ 1077 ~ 1076
~ 1071 ~ 106 ~ 1079

Clean after cuts.

Mistag rate 5% for QCD jets faking -jets.
~is further required to have

->6TeV



Sensitivities of the Leptogenesis at Colliders

HL-LHC has merely no sensitivities

16

> 13 TeV HL-LHC
% ] " 10 TeV Muon Collider, 10 ab™!
= 100 = \1\\‘3‘0 TeV Muon Collider, 90 ab™! E

1 .
10 0 15 20 25 30
M, [TeV]

10 TeV muon collider can test leptogenesis
with - 30 TeV.

30 TeV muon collider can test leptogenesis
with - 100 TeV potentially.




BAU and CP Violations

My[TeV]

20 25 30

M, [TeV]
Fixed , T - il T
Fixed ", . T A 1o T - |
T - T - 1
Larger CP violations in need to compensate the
inefficiencies due to the scatterings, and 11s

forbidden.



Conclusion

* Leptogenesis 1s the natural solution to the BAU
problem, once the origins of the neutrino masses are
considered.

* Resonant leptogenesis can be tested at colliders.

* U(1) gauge bosons lead to additional RH neutrinos
pair scatterings, might dilute the BAU, larger CP
violations in need, detectable at colliders.

* Both the HL-LHC and muon colliders can test the
resonant leptogenesis via the same-sign dilepton
signatures, while muon colliders show much better
sensitivities.
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Leptogenesis

Precise evolutions need solving Boltzmann equations

Results of one example
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Shapes controlled by and washout parameters,
including and




Signatures at Colliders

RH neutrinos production via

0er—r——r———r———r——7—1
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Muon colliders has much larger cross section, and can
produce RH neutrinos , beyond their collision
energies.




Signatures at Colliders

Cuts on the two electrons (Parton)
LHC
> 100 GeV, <25,

Muon colliders
> 30 GeV, < 243.

Cuts on the two W-jets (Parton)
LHC
> 500 GeV, < 2,

Muon colliders
> 500 GeV, < 2.43.




Leptogenesis

Main 1deas
135 (3)

A 4

BAU i1s generated mainly by the lightest RH neutrinos,
1-

135 (3)
4
entropy.

~1073is the equilibrium ; number density by

1s the CP asymmetry in 1 decay.

describe the efficiencies, including the production
and washout effects.



Signatures at Colliders

Projections on the
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HL-LHC should be less than one magnitude better the

current LHC.

Muon colliders can push the sensitivities to heavier
"and weaker couplings ( _ ).

We focus on , and fix as our

benchmarks to get maximal number of RH neutrinos.



Signatures at Colliders

6 Kinematics at the 10 TeV muon colliders
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W—jets Rec. N mass Rec.Z' mass
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Excellent separation between signal and background.

Reconstruction on NV mass 1s powerful.
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Conclusion

In this work

Derive the CP violations withina  scenario and
resonant leptogenesis, via solving Boltzmann
Equations.

Obtain the sensitivities of CP violations at the HL-
LHC and muon colliders via same-sign dilepton
signals.

Testing the resonant leptogenesis at colliders by
comparison.



