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Baryon Asymmetry of the Universe
�∆�
�

≈ (�. �� ± �. ��) × ��−��

from Planck satellite [1]

Figure from Kaori Fuyuto [2]
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Baryon Asymmetry of the Universe
Sakhorov’s criteria
1. Baryon number violating process,

Generate �∆�. 
Triangle Anomoly 

2. C and CP violations,
�(� → � + �) ≠ �(� → � + �), L and R. 
CKM 

3. Out of equilibrium. 
�(� → � + �) ≠ �(� + � → �). 
Electroweak phase transition

Way too small to explain the observed BAU within the 
SM. We need new physics!
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Baryon Asymmetry of the Universe
Potential solutions:

1. GUT baryogenesis
 

2. Electroweak baryogenesis,

3. The Affleck-Dine mechanism

4. Leptogenesis

We focus on the leptogenesis due to the neutrino mass 
problems. 
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Origin of the Neutrino Masses

 �  � ≲ �. �� ��
from Planck satellite [1]

https://physicsworld.com/a/daya-bay-
nails-neutrino-oscillation/

From Hitoshi Murayama
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Origin of the Neutrino Masses
Seesaw mechanism

� ⊃− ������� −�������
� =  0 ��

�� ��
 

�1 ≈
−��

2

��
, �2 ≈ ��.

The lightness of the observed neutrinos is explained by 
heavy right-handed neutrinos, with �� ≈ 1014 GeV to 
make �� natural. Not required by the inverse seesaw.

Additional CP violations can exists in the neutrino 
mass matrix.
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Leptogenesis
BAU from neutrino!

1. Lepton number is violated within the neutrino 
masses terms.

2. Additional CP violations can exists in the neutrino 
mass matrix.

3. Right-handed neutrinos decay out of equilibrium 
potentially.

And EW sphaleron to transfer �∆�into �∆� during EW 
phase transition,

�� =
28
79

��−�
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Leptogenesis
��� is the CP asymmetry in �1 decay,

comes from the interference between the tree-level 
and one loop amplitude.

Hierarchical RH neutrinos,
� ≲ 10−15��1, �∆� ≃ 10−3 × � × � ≃ 10−10.
As �~0.1, � ≃ 10−6, so ��� ≥ ���GeV.
Davidson-Ibarra Bound, no possible collider 

signatures.

Resonant leptogenesis (what we focus on)
if at least two of the RH neutrinos masses are 

degenerate, as ∆� ≲ Γ.
 � ≲  1

2
, only needs ��� ≥ ���� ≈ ��� GeV.
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B-L Model
Natural Seesaw mechanism if B-L number is gauged

�� = ���

Where � is the vev of the B-L Higgs. RH neutrinos 
masses are generated via the spontaneous symmetry 
breaking of the �(1)�−�.

Additional �′ gauge boson might interfere the 
leptogenesis via the scatterings.

Figure from Ref. [3] 
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Boltzmann Equations
Corrections on the Boltzmann equations,

����

�4
���
��

=−  
��
��
�� − 1  �� + 2�ℎ,� + 4�ℎ,� 

−  ��
�

(��
��)�

− � ���′ ,

      ����
�4

���−�
��

=− �  ��
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�� − 1 − ��−�

��
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2
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��
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1
2
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BAU and CP Violations
The scattering mediated via �′

makes the N closer to the equilibrium

The BAU is diluted due to the scatterings.
Large CP violation in need! 
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Signatures at Colliders
Muon colliders
Precision and energy frontier!

Compared to the �+�−machine:
Synchrotron radiation is suppressed by 109, hence 

the collision energy can reach O(10) TeV;
Also very clean, as long as the beam-induced-

background is controllable (main challenge).

Compared to the pp machine:
The entire collision energy can be used to probe 

hard process;
Much cleaner due to the small QCD background.
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Signatures at Colliders
The same processes are detectable at colliders.

corresponds to ��(��) → �′(�) → ��

The CP violations can be measured by the same-sign 
dilepton signatures from the � decays, there will be 
difference between ++ and -- pairs.
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Signatures at Colliders
Same-sign dileptons from RH neutrinos decay

��(��) → �′(�) → �� → �±�± +�∓�∓(jets)
��(� → �+�−) ≈ 25% for �~0

CP violations from the final states

� =
Γ(� → �+�−) − Γ(� → �−�+)
Γ(� → �+�−) + Γ(� → �−�+)

The limits are put assuming the number of signal 
events follows a Poisson distribution.

We only focus on the � interacts with the electrons, 
and assume other �s’ contribution to the BAU is 
subdominant. (Discussions on the other �s can be 
seen at Ref. [4])
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Signatures at Colliders
Backgrounds

mainly arise from leptonic final states with charge 
misidentification. The rate is ~0.1% at the current 
LHC.

Mistag rate 5% for QCD jets faking �-jets.
�� is further required to have ��� > 6 TeV
Clean after cuts.
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Sensitivities of the Leptogenesis at Colliders
HL-LHC has merely no sensitivities

10 TeV muon collider can test leptogenesis 
with ��′ ≲ 30 TeV.

30 TeV muon collider can test leptogenesis 
with ��′ ≲ 100 TeV potentially.
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BAU and CP Violations

Fixed ��,      ��′ ↑ →  ��′ ↓→ � ↑→ � ↓
Fixed ��′ ,   �.   �� ↑ →  ∆� ↑→ � ↑→ � ↓

  �.   �� ↑ → ������� ↑→ � ↓→ � ↑
Larger CP violations in need to compensate the 
inefficiencies due to the scatterings, and � ≳ 1 is 
forbidden.
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Conclusion
• Leptogenesis is the natural solution to the BAU 

problem, once the origins of the neutrino masses are 
considered.

• Resonant leptogenesis can be tested at colliders.

• U(1) gauge bosons lead to additional RH neutrinos 
pair scatterings, might dilute the BAU, larger CP 
violations in need, detectable at colliders.

• Both the HL-LHC and muon colliders can test the 
resonant leptogenesis via the same-sign dilepton 
signatures, while muon colliders show much better 
sensitivities.
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Leptogenesis
Precise evolutions need solving Boltzmann equations

Results of one example

Shapes controlled by �� and washout parameters, 
including thermal neutrino masses (�),   and 
effective neutrino masses (�∗).
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Signatures at Colliders
RH neutrinos production via Z’ decays

Muon colliders has much larger cross section, and can 
produce RH neutrinos off-shell, beyond their collision 
energies.
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Signatures at Colliders
Cuts on the two electrons (Parton)
LHC

��� > 100 GeV,  �� < 2.5,  
Muon colliders

      ��� > 30 GeV,  �� < 2.43.

Cuts on the two W-jets (Parton)
LHC

��� > 500 GeV,  �� < 2,  
Muon colliders

      ��� > 500 GeV,  �� < 2.43.
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Leptogenesis
Main ideas

�∆� ≃
135�(3)
4��∗

 
�
��� × �� × �

BAU is generated mainly by the lightest RH neutrinos, 
�1.

135�(3)
4��∗

~10−3is the equilibrium �1 number density by 
entropy.

��� is the CP asymmetry in �1 decay.

�� describe the efficiencies, including the production 
and washout effects.
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Signatures at Colliders
Projections on the sensitivities of Z’

HL-LHC should be less than one magnitude better the 
current LHC.
Muon colliders can push the sensitivities to heavier 
�′and weaker couplings (��−�). 
We focus on ��′ > � TeV, and fix ��−� = 0.8 as our 
benchmarks to get maximal number of RH neutrinos.
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Signatures at Colliders
Kinematics at the 10 TeV muon colliders

Excellent separation between signal and background.

Reconstruction on N  mass is powerful.
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Conclusion
In this work

• Derive the CP violations � within a �′ scenario and 
resonant leptogenesis, via solving Boltzmann 
Equations.

• Obtain the sensitivities of CP violations � at the HL-
LHC and muon colliders via same-sign dilepton 
signals.

• Testing the resonant leptogenesis at colliders by 
comparison.


