Searches for electroweak production of supersymmetric particles with ATLAS

Da XU (IHEP, CAS) Dalian Online, 2022

Institute of High Energy Physics Chinese Academy of Sciences

Supersymmetry

A theory to describe physics beyond *Standard Model*

Introduce an additional symmetry: fermions ~ bosons

It can

- Offer a Dark Matter candidate
- Possible unification of gauge coupling
- \cdot Solve the fine-tuning problem of the Higgs mass

Image credit: M. Rimoldi

The SUSY production @ 13TeV

Electroweak SUSY: smaller cross-section; less jet activity —> cleaner signature.

The electroweak SUSY search

Production of Charginos/Neutralinos/sLeptons

Phenomenology depends on wino-bino-higgsino mixing, mass hierarchy, and decay channels.

The EWK SUSY program in ATLAS

With Full Run2 Data

Published Signature	Scenario	Publication		
2L0J	C1C1-WW/slepton; Slepton pair	arXiv:1908.08215		
1lbb	C1N2-Wh	arXiv:1909.09226		
Stau	Stau pair	arXiv:1911.0666		
Compressed	C1N2-WZ; Slepton pair	arXiv:1911.12606		
3LeRJR	C1N2-WZ	arXiv:1912.08479		
Photon	C1N2-Wh; GGM	arXiv:2004.10894		
3L RPV	C1C1/C1N1 via RPV coupling	arXiv:2011.10543		
4L	C1N2/C1C1; Slepton pair; GGM	arXiv:2103.11684		
3L conv/RJ	C1N2-WZ/Wh	arXiv:2106.01676		
Full hadronic	C1N2/C1C1-WZ/Wh/WW; GGM	arXiv: 2108.07586		
NEW 2L2J	C1N2-WZ; GGM	arXiv: 2204.13072		
NEW 2LOJ	C1C1-WW; Slepton pair	ATLAS-CONF-2022-006		
NEW Tau	C1N2/C1C1-WZ/Wh/WW	ATLAS-CONF-2022-042		

Each benchmark scenario will be discussed and the fresh results are preferred in this talk. Reminder: more signatures are still in processing: **1L**; **SS**; multi-b; bbyy... More to come!

Decay States

Wino-bino/Higgsino search with 2L2J

Follow up on excesses in previous analysis (2.0 σ / 1.4 σ in 36.1 ifb).

Recursive Jigsaw Reconstruction (RJR)

- Selection as in 36.1 ifb analysis
- 2 leptons, same flavour opposite sign, jets
- ABCD method for gamma/Z + jets background
- No excess with full 139 ifb dataset

New regions targeting off-shell W/Z and GMSB

- 13 orthogonal SRs
- fake leptons estimated through matrix method

	SR2ℓ-Low-RJR	SR2ℓ-ISR-RJR
Observed events	39	30
Total expected background events	42 ± 9	31±9
Diboson events	10.6 ± 3.4	8.9 ± 2.5
Top events	3.5 ± 1.7	8.2 ± 2.3
Z/γ^* + jets events	27 ± 8	12 ± 9
Other events	$0.3^{+0.5}_{-0.3}$	0.11 ± 0.04

C1N2: extending partial Run2 limit by ~200 GeV.

GMSB: large range of low BR region is covered.

Wino-bino/Slepton search with 2L0J

Targeting moderately compressed regions, mass splitting close to W boson mass.

Slepton production

- Light smuon and light LSP could explain g-2 anomaly through loop corrections
- Same-flavour opposite sign final state, 0 or 1 jet SR
- Estimation of flavour symmetric backgrounds (FSB) through different flavour opposite sign final state

Chargino pair production

- Same-flavour and different flavour opposite sign final state
- Boosted Decision Tree approach, SR's binned in BDT output
- VV Control regions, fake leptons through matrix method

Slepton: 3.5 sigma local data deficit -> observed limit excluded more than expected. C1C1: Closing gaps towards diagonal.

Wino-bino search with hadronic taus

Chargino/neutralino pair production decaying to LSP via stau using >=2 tau final states

Considering muon g-2 and W-mass anomalies, light stau is also preferable

- Hadronically-decaying taus are identified by RNN (+ BDT for e/τ separation for 1-prong τ); calibrated in Z→ττ events
- Categorized into SS/OS and HM/LM channels
- mT2: reconstructed chargino/neutralino transverse mass using 2 taus and mET, assuming a pair of symmetric decays into visible (tau) and invisible particles (LSP and v)
- Dominant background: Multiboson (MC, VR); Fake (ABCD)

C1C1/C1N2 channels: Chargino/neutralino mass < ~1TeV is excluded

Wh channel: chargino/neutralino mass < ~300GeV is excluded

Wino-bino summary

Higgsino summary

- For Higgs dominant decay mode, <u>4b</u> channel wins
- For Z dominant decay mode
 - Low mass region: <u>4L</u> channel
 - High mass region: <u>OL</u> wins (w/ boost strategy)
 - Overall region: <u>2L2J</u> channel wins!

Slepton summary

- Search 1: Final states with <u>2 hard el/mu</u> (pT>25GeV) —> target high mass region!
- Search 2: <u>Compressed</u> analysis <u>2 soft el/mu</u> (pT_e>4.5GeV and pT_mu>3GeV) + <u>ISR-jet</u> —> target small mass splitting region!
- Search 3: <u>2 hadronic tau</u> analysis improvement in tau trigger with improved tau ID.

Slepton summary

- Advanced Search 1: Final states with <u>2 hard el/mu</u> (pT>25GeV) —> target *moderate* mass region!
- Search 2: <u>Compressed</u> analysis <u>2 soft el/mu</u> (pT_e>4.5GeV and pT_mu>3GeV) + <u>ISR-jet</u> —> target small mass splitting region!
- Search 3: <u>2 hadronic tau</u> analysis improvement in tau trigger with improved tau ID.

Summary

- * A short overview on the recent ATLAS Electroweak Supersymmetry results is presented with full Run2 data analyzed.
- * No discovery yet, the limits are probed in new/challenge scenarios. Various novel techniques are developed/under development.
- * More challenge signatures to come.
- * More excitingly, the EWK combination & the pMSSM interpretation are in process & to come next year. Hopefully more new ideas will be inspired! \Im \swarrow

Extra slides

ATLAS SUSY Searches* - 95% CL Lower Limits 11 1 0000

IVI	arc11 2022									vs = 13 lev
	Model	Si	ignature	e ∫.	L dt [fb ⁻] Ma	iss limit			Reference
s	$\tilde{q}\tilde{q}, \tilde{q} \rightarrow q\tilde{\chi}_1^0$	0 e, µ mono-jet	2-6 jets 1-3 jets	E_T^{miss} E_T^{miss}	139 139	q [1×, 8× Degen.] q [8× Degen.]	1.0 0.9	1.85	m($\tilde{\chi}_{1}^{0}$)<400 GeV m(\tilde{a})-m($\tilde{\chi}_{1}^{0}$)=5 GeV	2010.14293 2102.10874
Inclusive Searches	$\tilde{g}\tilde{g}, \; \tilde{g} \rightarrow q \bar{q} \tilde{\chi}_1^0$	0 e,µ	2-6 jets	E_T^{miss}	139	Ř Ř	Forbidden	2.3	$m(\tilde{\chi}_{1}^{0})=0 \text{ GeV}$ $m(\tilde{\chi}_{1}^{0})=1000 \text{ GeV}$	2010.14293 2010.14293
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q \tilde{q} W \tilde{\chi}_1^0$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q \tilde{q} (\ell) \tilde{\chi}_1^0$	1 e,μ ee,μμ	2-6 jets 2 jets	Emiss	139 139	řg řg		2.2	m($\tilde{\chi}_{1}^{0}$)<600 GeV m($\tilde{\chi}_{1}^{0}$)<700 GeV	2101.01629 CERN-EP-2022-014
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZ\tilde{\chi}_1^0$	0 e,μ SS e,μ	7-11 jets 6 jets	E_T^{miss}	139 139	rig ing	1	.15	m(t̃1) <600 GeV m(t̃1)=200 GeV	2008.06032 1909.08457
	$\tilde{g}\tilde{g}, \; \tilde{g} \rightarrow t t \tilde{\chi}_1^0$	0-1 e,μ SS e,μ	3 b 6 jets	$E_T^{\rm miss}$	79.8 139	ile ie		2.25	m(𝔅˜1)<200 GeV m(𝔅)-m(𝔅˜1)=300 GeV	ATLAS-CONF-2018-041 1909.08457
arks tion	$\tilde{b}_1 \tilde{b}_1$	0 e,µ	2 b	$E_T^{\rm miss}$	139	$\tilde{b}_1 \\ \tilde{b}_1$	0.68	1.255	$m(\tilde{\chi}_{1}^{0})$ <400 GeV 10 GeV< $\Delta m(\tilde{b}_{1}, \tilde{\chi}_{1}^{0})$ <20 GeV	2101.12527 2101.12527
	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_2^0 \rightarrow b h \tilde{\chi}_1^0$	0 e,μ 2 τ	6 b 2 b	$\begin{array}{c} E_T^{\rm miss} \\ E_T^{\rm miss} \end{array}$	139 139	\tilde{b}_1 Forbidden \tilde{b}_1	0.13-0.85	.23-1.35	$\Delta m(\tilde{\chi}_2^0, \tilde{\chi}_1^0) = 130 \text{ GeV}, m(\tilde{\chi}_1^0) = 100 \text{ GeV}$ $\Delta m(\tilde{\chi}_2^0, \tilde{\chi}_1^0) = 130 \text{ GeV}, m(\tilde{\chi}_1^0) = 0 \text{ GeV}$	1908.03122 2103.08189
squ	$\tilde{i}_1 \tilde{i}_1, \tilde{i}_1 \rightarrow t \tilde{\chi}_1^0$	0-1 e, µ	≥ 1 jet	ET Emiss	139	ĩ ₁	Exhibiting 0.05	1.25	m($\tilde{\chi}_{1}^{0}$)=1 GeV	2004.14060,2012.03799
en.	$I_1I_1, I_1 \rightarrow WbX_1$ $\tilde{I}_1\tilde{I}_1, \tilde{I}_1 \rightarrow \tilde{\tau}_1 by, \tilde{\tau}_1 \rightarrow \tau \tilde{G}$	1-2 T	2 jets/1 b	Emiss	139	11 Î1	Forbidden 0.65	1.4	m(X ₁)=500 GeV m(7)=800 GeV	2012.03799 2108.07665
3 rd ge direct	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow c \tilde{\chi}_1^0 / \tilde{c} \tilde{c}, \tilde{c} \rightarrow c \tilde{\chi}_1^0$	0 e,μ 0 e,μ	2 c mono-jet	E_T^{miss} E_T^{miss}	36.1 139	č Ĩ1	0.85		$m(\tilde{t}_{1}^{0})=0 \text{ GeV}$ $m(\tilde{t}_{1},\tilde{c})-m(\tilde{t}_{1}^{0})=5 \text{ GeV}$	1805.01649 2102.10874
	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow t \tilde{\chi}_2^0, \tilde{\chi}_2^0 \rightarrow Z/h \tilde{\chi}_1^0$ $\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z$	1-2 e,μ 3 e,μ	1-4 b 1 b	E_T^{miss} E_T^{miss}	139 139	ĩ ₁ ĩ ₂	0.067- Forbidden 0.86	1.18 r	$m(\tilde{\chi}_1^0)=500 \text{ GeV}$ $m(\tilde{\chi}_1^0)=360 \text{ GeV}, m(\tilde{r}_1)\cdot m(\tilde{\chi}_1^0)=40 \text{ GeV}$	2006.05880 2006.05880
	${\tilde \chi}_1^{\pm} {\tilde \chi}_2^0$ via WZ	Multiple ℓ/jets ee, μμ	s ≥ 1 jet	$E_T^{\rm miss}$ $E_T^{\rm miss}$	139 139	$\tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0}$ $\tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0}$ 0.205	0.96		$\begin{array}{c} m(\tilde{\xi}_1^0){=}0, \text{ wino-bino} \\ m(\tilde{\xi}_1^1){-}m(\tilde{\xi}_1^0){=}5 \text{ GeV}, \text{ wino-bino} \end{array}$	2106.01676, 2108.07586 1911.12606
	$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp}$ via WW	2 e,µ		$E_T^{\rm miss}$	139	\tilde{X}_{1}^{\pm}	0.42		$m(\tilde{\ell}_1^0)=0$, wino-bino	1908.08215
	$\tilde{\chi}_1^{\pi} \tilde{\chi}_2^0$ via Wh	Multiple <i>l</i> /jets	3	E_T^{miss}	139	$\tilde{X}_{1}^{\pm}/\tilde{X}_{2}^{\bullet}$ Forbidden	1.0	6	$m(\tilde{\chi}_1^0)=70 \text{ GeV}, \text{ wino-bino}$	2004.10894, 2108.07586
ect V	$\chi_1 \chi_1$ via $\ell_L / \bar{\nu}$	2 e, µ		Fmiss	139	λ ₁ τ [τ, τρ.] 0.16.0.3	0.12-0.39		$m(\ell, \bar{\nu})=0.5(m(\ell_1)+m(\ell_1))$	1908.08215
шįз	$\tilde{\ell}_{L,R}\tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_1^0$	2 e,µ	0 jets	Emiss	139	1	0.12-0.33		$m(\tilde{\chi}_{1}^{0})=0$	1908.08215
	00.0 10/20	ee, µµ	≥ 1 jet	Emiss	139	i 0.256	0.00.0.00		$m(\tilde{\ell})-m(\tilde{k}_1'')=10 \text{ GeV}$	1911.12606
	$HH, H \rightarrow nG/ZG$	0 e,μ 4 e,μ	≥ 3 b 0 jets	Emiss	139	H 0.13-0.23 Ĥ	0.29-0.88		$BR(\tilde{\chi}_{1}^{0} \rightarrow hG)=1$ $BR(\tilde{\chi}_{1}^{0} \rightarrow Z\tilde{G})=1$	1806.04030 2103.11684
		0 <i>e</i> ,µ ≥	≥ 2 large jet	E_T^{miss}	139	Ĥ	0.45-0.93		$BR(\tilde{\chi}_{1}^{0} \rightarrow Z\tilde{G})=1$	2108.07586
ъ.,	$\operatorname{Direct} \tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^\pm$	Disapp. trk	1 jet	$E_T^{\rm miss}$	139	$\tilde{\chi}_{1}^{\pm}$ $\tilde{\chi}_{1}^{\pm}$ 0.21	0.66		Pure Wino Pure higgsino	2201.02472 2201.02472
live	Stable § R-hadron	pixel dE/dx		E_T^{miss}	139	ğ		2.05		CERN-EP-2022-029
-g-	Metastable \tilde{g} R-hadron, $\tilde{g} \rightarrow qq \tilde{\chi}_1^0$	pixel dE/dx		E_T^{miss}	139	$\tilde{g} [\tau(\tilde{g}) = 10 \text{ ns}]$		2.2	m($\tilde{\chi}_{1}^{0}$)=100 GeV	CERN-EP-2022-029
Pag	$\ell\ell, \ell \rightarrow \ell G$	Displ. lep		$E_T^{\rm mas}$	139	e, μ τ 0.	.34		$\tau(\ell) = 0.1 \text{ ns}$ $\tau(\tilde{\ell}) = 0.1 \text{ ns}$	2011.07812 2011.07812
		pixel dE/dx		E_T^{miss}	139	Ť	0.36		$\tau(\tilde{\ell}) = 10 \text{ ns}$	CERN-EP-2022-029
	$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp} / \tilde{\chi}_1^0 , \tilde{\chi}_1^{\pm} {\rightarrow} Z \ell {\rightarrow} \ell \ell \ell$	3 e, µ			139	$\tilde{\chi}_{1}^{\mp}/\tilde{\chi}_{1}^{0}$ [BR(Z τ)=1, BR(Z e)=1]	0.625 1.05	5	Pure Wino	2011.10543
	$\tilde{\chi}_1^* \tilde{\chi}_1^* / \tilde{\chi}_2^0 \rightarrow WW/Z\ell\ell\ell\ell\nu\nu$	4 e, µ	0 jets	$E_T^{\rm miss}$	139	$\hat{X}_{1}^{\pm}/\hat{X}_{2}^{0} [\lambda_{133} \neq 0, \lambda_{12k} \neq 0]$	0.95	1.55	m($\tilde{\chi}_{1}^{0}$)=200 GeV	2103.11684
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\chi_1, \chi_1 \rightarrow qqq$	4	4-5 large jet: Multiple	5	36.1	ğ [m(X ₁)=200 GeV, 1100 GeV] ĩ [λ" =2e-4, 1e-2]	0.55 1.05	1.3 1.9	Large A112	1804.03568 ATLAS.CONF.2018.003
P	$ii, i \rightarrow i \lambda_1, \lambda_1 \rightarrow i b s$ $ii, i \rightarrow b \tilde{\chi}_1^+, \tilde{\chi}_1^+ \rightarrow b b s$		$\geq 4b$		139	7	Forbidden 0.95		m(x_1)=200 GeV, bind-like m(X_1^2)=500 GeV	2010.01015
Œ	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow bs$		2 jets + 2 b		36.7	$\tilde{t}_1 = [qq, bs]$	0.42 0.61			1710.07171
	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow q\ell$	2 e, µ	2 b		36.1	Ĩ₁ Ĩ₂ [18-10< X] <18-8 38-10< X]	<38-9] 1.0	0.4-1.45	$BR(\tilde{t}_1 \rightarrow be/b\mu) > 20\%$	1710.05544
	$\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0/\tilde{\chi}_1^0, \tilde{\chi}_{1,2}^0 {\rightarrow} tbs, \tilde{\chi}_1^+ {\rightarrow} bbs$	1-2 e,μ	≥6 jets		139	x ⁰ ₁ 0.2-0.3	2	1.0	Pure higgsino	2106.09609
*Only a selection of the available mass limits on new states or 10^{-1} 1 Mass scale [TeV]										,
phenomena is shown. Many of the limits are based on simplified models. c.f. refs. for the assumptions made.										

ATLAS Preliminary

Benchmark EWK scenarios

