

中国物理学会高能物理分会第十一届全国会员代表大会暨学术年会

vector boson fusion processes at the LHC CMS Experiment arXiv: 2206.08956

Probing heavy Majorana neutrinos and the Weinberg operator through

The dim-5 Weinberg operator

The Standard Model **neutrino masses** are non-zero

Why are neutrinos massless in the SM?

- A Renormalizability requires all SM operators with dimension = 4 $\Delta SU(2)_L \times U(1)_Y$ ElectroWeak symmetry
- \triangle Only left-handed neutrino \rightarrow No Dirac mass term
- \triangle Only one neutral Higgs doublet \rightarrow No Majorana mass term

Masses of SM neutrinos call for an extension to the SM Lagrangian

An Effective Field Theory (EFT) solution:

The dimension-5 Weinberg operator <u>Weinberg ('79)</u>

$$\mathcal{L}_{5} = \frac{C_{5}^{\ell\ell'}}{\Lambda} \left[\Phi \cdot \overline{L}_{\ell}^{c} \right] \left[L_{\ell'} \cdot \Phi \right] + \text{H.c.}$$

Adding this operator will give SM neutrinos Majorana masses Result lepton number violation (LNV)

EFT doesn't describe the new physics in detail. Need UV complete models.

[©]Opening the black box of Weinberg operator requires a "seesaw"

to lighter SM neutrinos

Colly three different kinds of realization at Born-level are allowed

Jie Xiao (Peking University)

中国物理学会高能物理分会第十一届全国会员代表大会暨学术年会

10-Aug-22

mm

 ℓ^+

[©]Opening the black box of Weinberg operator requires a "seesaw"

中国物理学会高能物理分会第十一届全国会员代表大会暨学术年会

EXO-17-012: Trilepton

 $\sigma(pp \to N\ell^{\pm} + X) \equiv |V_{\ell N}|^2 \times \sigma_0(pp \to N\ell^{\pm} + X).$

[©]Opening the black box of Weinberg operator requires a "seesaw"

Heavy Majorana neutrinos in pp $\rightarrow \mu^{\pm}\mu^{\pm}jj$

If neutrinos are Majorana fermions (whose anti-particles are themselves) \triangle A LHC version **0v\beta\beta**, lead to Lepton Number Violation (LNV)) \triangle At the LHC, we can probe μ and τ sectors

Study the Type-I seesaw Heavy Majorana neutrino (HMN) in $\mu^{\pm}\mu^{\pm}jj$

 \triangle Key parameters: m_N & mixing with SM neutrinos Mixing matrix

Jie Xiao (Peking University)

中国物理学会高能物理分会第十一届全国会员代表大会暨学术年会

Weinberg operator in $pp \rightarrow \mu^{\pm} \mu^{\pm} j j$

Take an EFT approach:

$$\mathcal{L}_{ ext{EFT}} = \mathcal{L}_{ ext{SM}}^{(4)} + rac{1}{\Lambda} \sum_k C_k^{(5)} Q_k^{(5)} + rac{1}{\Lambda^2} \sum_k C_k^{(6)} Q_k^{(6)} + \mathcal{O}igg(rac{1}{\Lambda^3}igg)$$

The Weinberg operator is the only gauge-invariant operator at dimension-5: Weinberg ('79)

Wilson Coefficients SM Higgs Doublet $\mathcal{L}_5 =$ $-\left[\Phi \cdot \overline{L}_{\ell}^{c}\right]\left[L_{\ell'} \cdot \Phi\right] + \text{H.c.}$ SM Lepton **EFT Scale** $v=\sqrt{2}\langle\Phi
anglepprox 246~{
m GeV}~{
m Higgs~vev}$ $m_{\ell\ell'} = C_5^{\ell\ell'} v^2 / \Lambda$ **Effective Majorana Mass**

0νββ @ <u>GERDA [2009.06079]</u>

 $|m_{ee}|$ < 79 – 180 meV at 90% C.L.

Weinberg operator in $pp \rightarrow \mu^{\pm} \mu^{\pm} j j$

Take an EFT approach:

$$\mathcal{L}_{ ext{EFT}} = \mathcal{L}_{ ext{SM}}^{(4)} + rac{1}{\Lambda} \sum_{k} C_k^{(5)} Q_k^{(5)} + rac{1}{\Lambda^2} \sum_{k} C_k^{(6)} Q_k^{(6)} + \mathcal{O}igg(rac{1}{\Lambda^3}igg)$$

The Weinberg operator is the only gauge-invariant operator at dimension-5: <u>Weinberg ('79)</u>

Event selections

 \odot low- $\Delta \phi_{ll}$ SR and high- $\Delta \phi_{ll}$ SR are used for HMN processes the high- p_T^{miss} SR and inverted low- p_T^{miss} SR are used for Weinberg op. process

Jie Xiao (Peking University)

10-Aug-22

Post-fit Data vs. Expectation

Simultaneously fit the signal and control regions. ▲ The fitted distribution is $H_T/p_{\mu 1}$ where $H_T = \sum p_T^i(jet), (i \in p_T(jet) > 30 \text{GeV})$

Jie Xiao (Peking University)

Signal extraction: Heavy Majorana Neutrinos

Interpretations of limits

 \triangle Parameter of interest (POI) in fit: signal strength $\hat{\mu}$

[©]For VBF production of HMN

▲ The cross section dependence reads:

$$\sigma(pp
ightarrow \ell_i^\pm \ell_j^\pm + Xig) \equiv ig| V_{\ell_i N} V_{\ell_j N}ig|^2 imes \sigma_0ig(pp
ightarrow \ell_i^\pm \ell_j^\pm +$$

Opper limits on signal strength can be translated to the squared mixing element $|V_{\mu N}|^2 = \sqrt{\hat{\mu}}$

 m_N up to around **23 TeV** is excluded

[©] Better constraints on $|V_{\mu N}|^2$ for $m_N \gtrsim 650$ GeV

中国物理学会高能物理分会第十一届全国会员代表大会暨学术年会

Signal extraction: Weinberg op.

Interpretations of limits \triangle POI in fit: signal strength $\hat{\mu}$

For Weinberg op. processes ${old A}$ The cross-section dependence reads: $\hat{\sigma}(W^+W^+
ightarrow \ell$

 \triangle Effective Majorana Mass is given by: $m_{\ell\ell'} = C_5^{\ell\ell'} v^2$

translate to effective Majorana mass limit $m_{\mu\mu} = v^2 |C_5^{\mu\mu}| / \hat{\Lambda}$

 \triangle Observed (expected) lower bond on EFT scales A: 5.6 (4.7) TeV (assuming $C_5^{\mu\mu} = 1$)

 \triangle Observed (expected) upper limits of effective Majorana mass $m_{\mu\mu}$: 10.8 (12.8) GeV

$$\ell^+\ell'^+ig) = rac{(2-\delta_{\ell\ell'})}{2\pi 3^2}igg|rac{C_5^{\ell\ell'}}{\Lambda}igg|^2 + \mathcal{O}igg(rac{m_W^2}{M_{WW}^2}igg) + 2/\Lambda$$

 \triangle Interpretation: translate to EFT scale limit with Wilson coefficient fixed to unit, thus $\widehat{A} = 200 \times \widehat{\mu}^{-\frac{2}{2}}$ GeV, and

Summary

Performed analysis on VBF production of same-sign muon pairs associated with two jets A Heavy Majorana neutrino from Type-I Seesaw Model \Box Upper limits on $|V_{\mu N}|^2$ for m_N up to around 23 TeV \Box Better constraints on $|V_{\mu N}|^2$ for $m_N \gtrsim 650$ GeV First direct search at collider on dimension-5 Weinberg operator \Box Upper limit of effective Majorana mass $|m_{\mu\mu}|$, observed (expected): 10.84 (12.84) GeV

CarXiv: 2206.08956 submitted to PRL and will be accepted soon

作者:	韩打
	中

Jie Xiao (Peking University)

扬眉 来源: 中国科学报 发布时间: 2022/5/10 21:54:35

科学报 测试"跷跷板模型",揭示中微子质量之谜 北大CMS合作组对中微子质量的"跷跷板模型"进行了新的测试